УПРУГО-РЕЛАКСАЦИОННЫЕ СВОЙСТВА ДРЕВЕСИНЫ ЛИСТВЕННИЦЫ И ИХ РОЛЬ ПРИ ПОЛУЧЕНИИ ДРЕВЕСНЫХ И ДРЕВЕСНО-УГОЛЬНЫХ БРИКЕТОВ
DOI:
https://doi.org/10.37482/0536-1036-2020-1-200-208Ключевые слова:
биорефайнинг древесины, древесина лиственницы, биотопливо, древесные брикеты, древесно-угольные брикеты, пеллеты, физико-механические свойства, релаксационные свойстваАннотация
Переработка опилок, на долю которых приходится 10...12 % от объема перерабатываемого древесного сырья в продукцию с высокой добавленной стоимостью, является одним из направлений биорефайнинга древесины. Это предпосылка их переработки в биотопливо второго поколения – остеклованные брикеты, а также карбонизированные брикеты на их основе. Учитывая специфические особенности релаксационных переходов на стадиях получения древесных и древесно-угольных брикетов, изучены релаксационные свойства древесины лиственницы и проанализирована их роль в технологическом процессе, осуществляемом при создании биотоплива нового поколения с заданным комплексом эксплуатационных свойств. Рассмотрена взаимосвязь направленного изменения релаксационного состояния полимерных компонентов древесины (лигнина, целлюлозы, гемицеллюлоз) и технологических параметров процесса. В исходной древесине и древесных опилках целлюлоза и гемицеллюлозы находятся в высокоэластическом состоянии, что подтверждается полученными экспериментальными данными. Для измельчения древесных опилок до порошкообразного состояния при минимальном расходе энергии целесообразно обеспечить перевод полимерных компонентов древесины ниже температуры хрупкости, т. е. осуществить сушку древесины до минимально-возможной остаточной влажности. Последующее увлажнение паром до влажности 3...4 % придает системе экструдируемость за счет образования на поверхности древесных частиц гемицеллюлозного геля.
Для цитирования: Пекарец А.А., Ерохина О.А., Новожилов В.В., Мандре Ю.Г., Аким Э.Л. Упруго-релаксационные свойства древесины лиственницы и их роль при получении древесных и древесно-угольных брикетов // Изв. вузов. Лесн. журн. 2020. № 1. С. 200–208. DOI: 10.37482/0536-1036-2020-1-200-208
Скачивания
Библиографические ссылки
Аким Э.Л., Коваленко М.В., Рассказова Н.Я., Васильев В.В., Ерохина О.А., Бучельникова Я.В., Мандре Ю.Г. Проект «Лиственница». Программно-аппаратный комплекс для изучения свойств древесины лиственницы // Целлюлоза. Бумага. Картон. 2011. № 5. С. 24–28. [Akim E.L., Kovalenko M.V., Rasskazova N.Ya., Vasil’yev V.V., Erokhina O.A., Buchel’nikova Y.V. The Larch Project. Hardware and Software Package for Studying the Propertiesof Larch Wood. Tsellyuloza. Bumaga. Karton [Pulp. Paper. Board], 2011, no. 5, pp. 24–28].
Аким Э.Л., Мандре Ю.Г., Пекарец А.А. Изменение релаксационного состояния полимерных компонентов древесины при проведении ее высокотемпературного биорефайнинга // Химические волокна. 2019. № 3. С. 14–18. [Akim E.L., Mandre Yu.G., Pekarets A.A. Change in the Relaxation State of Polymeric Components of Wood during High Temperature Biorefining. Khimicheskiye volokna [Fibre Chemistry], 2019, no. 3, pp. 14–18].
Виноградов Н.В. Компрессионные свойства древесины лиственницы какоснова отжимной технологии извлечения арабиногалактана: автореф. ... канд. техн. наук. СПб., 2019. 16 с. [Vinogradov N.V. Compression Properties of Larch Wood as the Basis for Squeezing Technology of Arabinogalactan Extraction: Cand. Eng. Sci. Diss. Abs. Saint Petersburg, SPbGUPTD, 2019.16 p.].
Голубев В.А. Обоснование и совершенствование способов энергетического использования растительных отходов: автореф. дис. ... канд. техн. наук. Барнаул, 2014. 16 с. [Golubev V.A. Substantiation and Improvement of Methods for the Energy Use of Vegetation Residues: Cand. Eng. Sci. Diss. Abs. Barnaul, 2014. 16 p.].
Кашин Е.М. Разработка газогенераторов роторного исполнения для древесного топлива: автореф. дис. ... канд. техн. наук. Казань, 2019.16 с. [Kashin E.M. Development of Rotary Gas Generatorsfor Wood Fuel: Cand. Eng. Sci. Diss. Abs. Kazan, 2019. 16 p.].
Лесная биоэнергетика / под ред. Ю.П. Семенова. М.: МГУЛ, 2008. 348 с. [Forest Bioenergy. Ed.byYu.P. Semenova. Moscow, MGUL Publ., 2008. 348 p.].
Любов В.К. Совершенствование топливно-энергетического комплекса путем повышения эффективности сжигания топлив и вовлечения в энергетический баланс отходов переработки биомассы и местноготоплива: автореф. дис. ... д-ра техн. наук. Архангельск, 2004. 44 с. [Lyubov V.K. Improving the Fuel and Energy Complex by Increasing the Efficiency of Fuel Combustion and Involving Biomass and Local Fuel Wastesinto the Energy Balance: Dr. Eng. Sci. Diss. Abs. Arkhangelsk, 2004. 44 p.].
Марьяндышев П.А. Совершенствование технологии энергетического использования древесного биотоплива: автореф. дис. ... канд. техн. наук. СПб., 2015. 16 с. [Mar’yandyshevP.A. Improvingthe Technology of Energy Use of Wood Biofuel: Cand. Eng. Sci. Diss. Abs., Saint Petersburg, 2015. 16 p.].
Мюллер О.Д., Мелехов В.И., Любов В.К., Тюрикова Т.В. Математическая модель процесса формирования древесных гранул // Изв. вузов. Лесн. журн. 2015. № 2. С. 104–122. [Myuller O.D., Melekhov V.I., Lyubov V.K., Tyurikova T.V. Mathematical Model of Wood Granules Formation. Lesnoy Zhurnal [Russian Forestry Journal], 2015, no. 2, pp. 104–122]. DOI: 10.17238/issn0536-1036.2015.2.104; URL: http://lesnoizhurnal.ru/upload/iblock/c41/1-_-myuller.pdf
Патент № 2596683 Российская Федерация, МПК F26B 20/00, F26B 17/10, F26B 3/10. Комплекс для непрерывной термообработки твердых мелких частиц, преимущественно дисперсных древесных материалов, и способы термообработки, реализуемые с помощью данного комплекса / Пекарец А.А.; заявитель и патентообладатель ООО «ПРОМЕТЕЙ». [Pekarets A.A. System for Continuous Heat Treatment of Solid Fine Particles, Mainly Disperse Wood Materials and Methods of Heat Treatment, Implemented Using Said Complex. Patent RF, no. 2596683, 2016].
Патент № 2628602 Российская Федерация, МПК C10B 53/02. Устройство для получения древесного угля / А.А. Пекарец; патентообладатель ООО «ПРОМЕТЕЙ». [Pekarets A.A. Wood Coal Production Device. Patent RF, no. 2628602, 2017].
Патент № 2653513 Российская Федерация, МПК C10L 5/44, С10L 5/40. Высококалорийные топливные брикеты из композиционного материала на основе древесных отходов (варианты) / А.А. Пекарец; патентообладатель ООО «ПРОМЕТЕЙ». [Pekarets A.A. High-Energy Fuel Briquets from Composite Material Based on Remains of Wooden Materials (Options). Patent RF, no. 2653513, 2018].
Патент № 2678089 Российская Федерация, МПК C10L 5/44, С10В 47/28, С10В 49/02, В09B 3/00. Промышленный комплекс для производства древесного углябезотходным способом низкотемпературного пиролиза из брикетированных древесных отходов / А.А. Пекарец; патентообладатель ООО «ПРОМЕТЕЙ». [Pekarets A.A. Industrial Complex for the Production of Charcoal without Waste Method of LowTemperature Pyrolysis from Briquette Wood Waste. Paten tRF, no. 2678089, 2019].
Попова Е.И. Совершенствование технологии торрефикации вторичных древесных ресурсов: автореф. дис. ... канд. техн. наук. Архангельск, 2018. 24 с. [Popova E.I. Improving the Technology of Torrefactionof Secondary Wood Resources: Cand. Eng. Sci. Diss. Abs. Arkhangelsk, 2018. 24 p.].
Соболев Ю.С. Древесина как конструкционный материал. М.: Лесн. пром-сть, 1979. 249 с. [Sobolev Yu.S. Wood as a Structural Material. Moscow, Lesnaya promyshlennost’ Publ., 1979. 249 p.].
Akim E.L. Biorefining of Wood. Fibre Chemistry, 2016, vol. 48, iss. 3, pp. 181–190. https://doi.org/10.1007/s10692-016-9765-7
Akim E.L., Mandre Y.G., Pekarets A.A. Change in Relaxation State of Polymer Components of Wood During its High-Temperature Biorefining. Fibre Chemistry, 2019, vol. 51, iss. 3, pp. 164–169. https://doi.org/10.1007/s10692-019-10067-8
Forest Products Annual Market Review 2018–2019. New York, United Nations, 2019. 137 p. Available at: http://www.unece.org/forests/fpamr2019 (accessed 12.05.19).
Pekarets A.A., Mandre Y., Vinogradov N., Akim E.L. Biorefining of Larch Sawdust Producing Wood and Wood-Charcoal Briquettes: Scientific and Technological Aspects. Proceedings of the 27th European Biomass Conference and Exhibition, Lisbon, Portugal, May 27–30, 2019. Lisbon, 2019, pp. 1887–1889.
Popp J., Lakner Z., Harangi-Rákos M., Fári M. The Effect of Bioenergy Expansion: Food, Energy and Environment. Renewable and Sustainable Energy, 2014, vol. 32, pp. 559–578. https://doi.org/10.1016/j.rser.2014.01.056
Renewable Energy – Medium-Term Market Report 2016. OECD/IEA, 2016. 281 p.
Thiffault E., Asikainen A., Devlin G. Comparison of Forest Biomass Supply Chains from the Boreal and Temperate Biomes. Ch. 2. Mobilisation of Forest Bioenergy in the Boreal and Temperate Biomes. Ed. by E. Thiffault, C.T. Smith, M. Junginger, J. Saddler, G. Berndes. Academic Press, 2016, pp. 10–35. https://doi.org/10.1016/B978-0-12-804514-5.00002-0
Tumuluru S.J., Wright C.T., Kenny K.L., Hess J.R. A Review on Biomass Densification Technologies for Energy Application. Idaho Falls, ID, INL, 2010. 85 p.
Van Dam J. The Charcoal Transition: Greening the Charcoal Value Chain to Mitigate Climate Change and Improve Local Livelihoods. Rome, FAO, 2017. 178 p.
Wertz J.-L., Deleu M., Coppée S., Richel A. Hemicelluloses and Lignin in Biorefineries. Boca Raton, FL, CRC Press, 2017. 330 p. https://doi.org/10.1201/b22136
Wood Energy in the ECE Region: Data, Trends and Outlook in Europe, the Commonwealth of Independent States and North America. Ed. by F.X. Aguilar. New York, United Nations, 2018.94 p. Available at: http://www.unece.org/index.php?id=48593 (accessed 12.05.19).