Металлоуглеродные композиты на основе лигносульфонатов

Авторы

  • О. С. Бровко Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лавёрова РАН https://orcid.org/0000-0002-1961-7831
  • И. А. Паламарчук Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лавёрова РАН https://orcid.org/0000-0002-2947-1370
  • Н. А. Горшкова Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лавёрова РАН https://orcid.org/0000-0002-2036-2418
  • А. Д. Ивахнов Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лавёрова РАН https://orcid.org/0000-0003-2822-9192

DOI:

https://doi.org/10.37482/0536-1036-2020-3-159-168

Ключевые слова:

лигносульфонат, хитозан, нанокомпозит, углеродный материал, металлокомплекс, полиэтиленполиамин

Аннотация

Предложен синтез новых наноструктурированных металлоуглеродных композитов на основе лигносульфонатов. Получение и изучение их свойств является актуальной задачей современного химического материаловедения ввиду применения материалов на их основе в качестве ионоселективных электродов и электрохимических катодов, электродов суперконденсаторов, магнитных сенсоров, устройств записи и хранения информации, гетерогенных катализаторов. Решающее значение при получении этих композитов приобретает метод синтеза, позволяющий формировать частицы определенной формы и размера, определяющих в дальнейшем свойства композиционного материала (сорбционные, электрохимические, каталитические, магнитные, оптические). Цель исследования – изучение влияния условий синтеза наноструктурированных металлоуглеродных композитов на основе углеродсодержащего органического сырья (лигносульфонатов, хитозана, полиэтиленполиамина) и встроенного металла на структуру и физико-химические характеристики новых материалов. Разработан способ, особенностью которого является коллоидно-химический синтез с последующей карбонизацией, позволяющий получить высокодисперсный композит с развитой микро-мезопористой структурой, удельной поверхностью до 400 м2/г и распределением частиц в узком диапазоне размеров (30…65 нм). Металл связывается с лигносульфонатом натрия (ЛС) на стадии формирования хелатного комплекса, который при взаимной коагуляции с хитозаном (ХТ) или полиэтиленполиамином (ПЭПА) образует нерастворимый в воде полимерный металл-органический комплекс. Степень извлечения ионов Со(II) из водных растворов при формировании металлокомплекса состава ЛС–Co–ХТ составляет 78,6 % при массовом соотношении ЛС и ХТ – 1 : 0,25, а для комплекса ЛС–Co–ПЭПА – 56,3 % при массовом соотношении ЛС и ПЭПА – 1 : 0,1. Проведение центрифугирования, промывки ацетоном и карбонизации позволяет зафиксировать металл в структуре металлоуглеродного композита. Проанализированы условия синтеза: количественное соотношение полимерных компонентов (для системы ЛС : ХТ – 1 : 0,25; для ЛС : ПЭПА – 1 : 0,1); продолжительность формирования хелатного комплекса – 1 ч и металл-органического композита – 1 ч; рН 4–6. Морфология наноструктурированного металлоуглеродного композита изучена методом электронной микроскопии, параметры пористой  структуры – методом низкотемпературной адсорбции азота. Углеродные наноматериалы, полученные при мягких условиях синтеза на основе дешевых природных полимеров, перспективны для применения в качестве эффективных сорбентов и катализаторов, в том числе и для защиты окружающей среды.
Для цитирования: Бровко О.С., Паламарчук И.А., Горшкова Н.А., Ивахнов А.Д. Металлоуглеродные композиты на основе лигносульфонатов // Изв. вузов. Лесн. журн. 2020. № 3. С. 159–168. DOI: 10.37482/0536-1036-2020-3-159-168
Финансирование: Исследования проведены в ходе выполнения государственного задания ФГБУН ФИЦКИА РАН ФНИ 2018–2020 гг. «Физико-химические, генетические и морфологические основы адаптации растительных объектов в условиях изменяющегося климата высоких широт» (№ АААА-А18-118012390231-9) с использованием оборудования ЦКП НО «Арктика» (САФУ) и ЦКП НО «КТ РФ в области экологической безопасности Арктики» (ФГБУН ФИЦКИА РАН).

Скачивания

Данные скачивания пока недоступны.

Биографии авторов

О. С. Бровко, Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лавёрова РАН

канд. хим. наук, вед. науч. сотр., доц.; ResearcherID: AAF-5387-2019

И. А. Паламарчук, Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лавёрова РАН

канд. хим. наук, ст. науч. сотр.; ResearcherID: AAF-5454-2019

Н. А. Горшкова, Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лавёрова РАН

мл. науч. сотр.; ResearcherID: AAF-5411-2019

А. Д. Ивахнов, Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лавёрова РАН

канд. хим. наук, ст. науч. сотр.; ResearcherID: U-4822-2019

Библиографические ссылки

Бровко О.С., Паламарчук И.А., Вишнякова А.П. Влияние молекулярной массы лигносульфоната натрия на комплексообразование с полиэтиленполиамином // Химия растит. сырья. 2011. № 1. С. 65–70. [Brovko O.S., Palamarchuk I.A., Vishnyakova A.P. The Effect of the Molecular Weight of Sodium Lignosulfonate on Complex Formation with Polyethylene Polyamine. Khimija Rastitel’nogo Syr’ja [Chemistry of plant raw material], 2011, no. 1, pp. 65–70].

Бровко О.С., Паламарчук И.А., Сысоева Н.В., Вальчук Н.А., Бойцова Т.А., Боголицын К.Г., Дубовый В.К. Фильтрующие материалы на основе минеральных волокон с биополимерным слоем // Изв. вузов. Лесн. журн. 2017. № 1. С. 186–194. [Brovko O.S., Palamarchuk I.A., Sysoeva N.V., Val’chuk N.A., Boytsova T.A., Bogolitsyn K.G., Dubovyy V.K. Filter Materials Based on Mineral Fibers with Biopolymer Layer. Lesnoy Zhurnal [Russian Forestry Journal], 2017, no. 1, pp. 186–194]. DOI: 10.17238/issn0536-1036.2017.1.186, URL: http://lesnoizhurnal.ru/upload/iblock/e82/brovko.pdf

Вишнякова А.П., Бровко О.С. Применение ультрафильтрации для очистки, концентрирования и фракционирования лигносульфонатов сульфитного щелока // Экология и промышленность России. 2009. № 8. С. 37–39. [Vishnyakova A.P., Brovko O.S. Application of Ultrafiltration for Clearing, Concentration and Fractionating of Lignosulphonates of Sulfite Lye. Ekologia i promyshlennost Rossii [Ecology and Industry of Russia], 2009, no. 8. pp. 37–39].

Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. М.: НаукаФизматлит, 2007. 416 с. [Gusev A.I. Nanomaterials, Nanostructures, Nanotechnologies. Moscow, Nauka-Fizmatlit Publ., 2007. 416 p.].

Паламарчук И.А., Бровко О.С., Бойцова Т.А., Вишнякова А.П., Макаревич Н.А. Влияние ионной силы раствора на комлексообразование сульфопроизводных биополимера лигнина и хитозана // Химия растит. сырья. 2011. № 2. С. 57–64. [Palamarchuk I.A., Brovko O.S., Boytsova T.A., Vishnyakova A.P., Makarevich N.A. The Ionic Strength Effect of a Solution on the Complex Formation of Sulfonated Biopolymers of Lignin and Chitosan. Khimija Rastitel’nogo Syr’ja [Chemistry of plant raw material], 2011, no. 2, pp. 57–64].

Паламарчук И.А., Макаревич Н.А., Бровко О.С., Бойцова Т.А., Афанасьев Н.И. Кооперативные взаимодействия в системе лигносульфонат–хитозан // Химия растит. сырья. 2008. № 4. С. 29–34. [Palamarchuk I.A., Makarevich N.A., Brovko O.S., Boitsova T.A. Afanasiev N.I. The Cooperative Interaction in the System of Lignosulfonate – Chitosan. Khimija Rastitel’nogo Syr’ja [Chemistry of plant raw material], 2008, no. 4, pp. 29–34].

Пршибил Р. Комплексоны в химическом анализе / под ред. Ю.Ю. Лурье. М.: Изд-во иностр. лит., 1960. 580 c. [Prshibil R. Complexones in Chemical Analysis. Ed. by Yu.Yu. Lur’ye. Moscow, Izdatel’stvo inostrannoy literatury, 1960, 580 p.].

Серов В.А., Афанасьев Н.И., Бровко О.С., Засухина Л.В. Извлечение лигнинсодержащих соединений из водных растворов в виде разнолигандных комплексов с переходными металлами // Химия в интересах устойчивого развития. 1997. Т. 5, № 5. С. 613–618. [Serov V.A. Afanas’yev N.I., Brovko O.S. Zasukhina L.V. Extraction of Lignin-Containing Compounds from Aqueous Solutions in the Form of Mixed Ligand Complexes with Transition Metals. Khimiya v interesakh ustoichivogo razvitiya [Chemistry for Sustainable Development], 1997, vol. 5, no. 5, pp. 613–618].

Серов В.А., Бровко О.С., Паламарчук И.А. Комплексообразование в системе лигносульфонат натрия – полиэтиленполиамин // Химия в интересах устойчивого развития. 2006. Т. 14, № 5. С. 485–489. [Serov V.A., Brovko O.S., Palamarchuk I.A. Complex Formation in the System Sodium Lignosulphonate – Polyethylenepolyamin. Khimiya v interesakh ustoichivogo razvitiya [Chemistry for Sustainable Development], 2006, vol. 14, no. 5, pp. 485–489].

Соколов О.М. Определение молекулярных масс лигнинов на ультрацентрифуге и методом гель-фильтрации. Л.: ЛТА, 1978. 76 с. [Sokolov O.M. Determination of Molecular Weights of Lignins Using an Ultracentrifuge and by the Gel Filtration Method. Leningrad, LTA Publ., 1978. 76 p.].

Тептерева Г.А., Шавшукова С.Ю., Конесев В.Г. Особенности комплексообразования нейтральных лигносульфонатов с катионами металлов переменной валентности // Башкир. хим. журн. 2017, Т. 24. № 2. С. 66–69. [Teptereva G.A., Shavshukova S.Yu., Konesev V.G. Features of the Complexation Ofneutral Lignosulfonates with the Cations of Variable Valency Metals. Bashkirskii khimicheskii zhurnal [Bashkir chemistry journal], 2017, vol. 24, no. 2, pp. 66–69].

Хабаров Ю.Г., Вешняков В.А., Кузяков Н.Ю. Получение и применение комплексов лигносульфоновых кислот с катионами железа // Изв. вузов. Лесн. журн. 2019. № 5. С. 167–187. [Khabarov Yu.G., Veshnyakov V.A., Kuzyakov N.Yu. Preparation and Application of Complexes of Lignosulfonic Acids with Iron Cations. Lesnoy Zhurnal [Russian Forestry Journal], 2019, no. 5, pp. 167–187]. DOI: 10.17238/issn0536-1036.2019.5.167, URL: http://lesnoizhurnal.ru/upload/iblock/73e/167_187.pdf

Babkin I., Brovko O., Iakovlev M., Khabarov Yu. Ferrofluid Synthesis Using Nitrosated Lignosulfonates. Industrial and Engineering Chemistry Research, 2013, vol. 52, no. 23, pp. 7746–7751. DOI: 10.1021/ie400531f

Bhushan B., Luo D., Schricker S.R., Sigmund W., Zauscher S. Handbook of Nanomaterials Properties. Berlin, Springer, 2014. 1463 p. DOI: 10.1007/978-3-642-31107-9

Brovko O., Palamarchuk I., Bogdanovich N., Ivakhnov A., Chukhchin D., Malkov A., Volkov A., Arkhilin M., Gorshkova N. Structure and Electrophysical Properties of Carbogels Based on the Interpolyelectrolyte Complex Lignosulfonate – Chitosan with Various Composition. Microporous and Mesoporous Materials, 2019, vol. 282, pp. 211–218. DOI: 10.1016/j.micromeso.2019.03.030

Brovko O., Palamarchuk I., Bogolitsyn K., Bogdanovich N., Ivakhnov A., Chukhchin D., Khviuzova K., Valchuk N. Carbon Nanomaterials Based on Interpolyelectrolyte Complex Lignosulfonate Chitosan. Holzforschung, 2019, vol. 73, iss. 2, pp. 181–187. DOI: 10.1515/hf-2017-0221

Brovkо O.S., Palamarchuk I.A., Boitsova T.A., Bogolitsyn K.G., Valchuk N.A., Chukhchin D.G. Influence of the Conformation of Biopolyelectrolytes on the Morphological Structure of Their Interpolymer Complexes. Macromolecular Research, 2015, vol. 23, no. 11, pp. 1059–1067. DOI: 10.1007/s13233-015-3140-z

Dzidziguri E.L., Sidorova E.N., Bagdasarova K.A., Zemtsov L.M., Karpacheva G.P. Formation of Co Nanoparticles in Metal-Carbon Composites. Crystallography Reports, 2008, vol. 53, pp. 316–319. DOI: 10.1134/S1063774508020223

Dzidziguri L., Zemtsov L.M., Karpacheva G.P., Muratov D.G., Sidorova E.N. Preparation and Structure of Metal-Carbon Nanocomposites Cu-C. Nanotechnologies in Russia, 2010, vol. 5, pp. 665–668. DOI: 10.1134/S1995078010090119

Gamzazade A.I., Šlimak V.M., Skljar A.M., Štykova E.V., Pavlova S.S.A., Rogožin S.V. Investigation of the Hydrodynamic Properties of Chitosan Solutions. Acta Polymerica, 1985, vol. 36, iss. 8, pp. 420–424. DOI: 10.1002/actp.1985.010360805

Gardon J.L., Mason S.G. Physicochemical Studies of Lignosulphonates. II. Behaviour as Polyelectrolytes. Canadian Journal of Chemistry, 1955, vol. 33, no. 10, pp. 1491–1501. DOI: 10.1139/v55-182

Lu A.-H., Hao G.-P., Sun Q., Zhang X.-Q., Li W.-C. Chemical Synthesis of Carbon Materials with Intriguing Nanostructure and Morphology. Macromolecular Chemistry and Physics, 2012, vol. 213, iss. 10-11, pp. 1107–1131. DOI: 10.1002/macp.201100606

Lu Y., Zhu Z., Liu Z. Carbon-Encapsulated Fe Nanoparticles from Detonation-Induced Pyrolysis of Ferrocene. Carbon, 2005, vol. 43, iss. 2, pp. 369–374. DOI: 10.1016/j.carbon.2004.09.020

Rodríguez-Reinoso F. The Role of Carbon Materials in Heterogeneous Catalysis. Carbon, 1998, vol. 36, iss. 3, pp. 159–175. DOI: 10.1016/S0008-6223(97)00173-5

Schur D.V., Dubovoy A.G., Zaginaichenko S.Yu., Adejev V.M., Kotko A.V., Bogolepov V.A., Savenko A.F., Zolotarenko A.D. Production of Carbon Nanostructures by Arc Synthesis in the Liquid Phase. Carbon, 2007, vol. 45, iss. 6, pp. 1322–1329. DOI: 10.1016/j.carbon.2007.01.017

Velo-Gala I., López-Peñalver J.J., Sánchez-Polo M., Rivera-Utrilla J. Role of Activated Carbon Surface Chemistry in Its Photocatalytic Activity and the Generation of Oxidant Radicals under UV or Solar Radiation. Applied Catalysis B: Environmental, 2017, vol. 207, pp. 412–423. DOI: 10.1016/j.apcatb.2017.02.028

Yengejeh S.I., Kazemi S.A., Öchsner A. Carbon Nanotubes as Reinforcement in Composites: A Review of the Analytical, Numerical and Experimental Approaches. Computational Materials Science, 2017, vol. 136, pp. 85–101. DOI: 10.1016/j.commatsci.2017.04.023

Загрузки

Опубликован

03.06.2020

Как цитировать

Бровко, О. С., И. А. Паламарчук, Н. А. Горшкова, и А. Д. Ивахнов. «Металлоуглеродные композиты на основе лигносульфонатов». Известия вузов. Лесной журнал, вып. 3, июнь 2020 г., сс. 159-68, doi:10.37482/0536-1036-2020-3-159-168.

Выпуск

Раздел

ТЕХНОЛОГИЯ ХИМ. ПЕРЕРАБОТКИ ДРЕВЕСИНЫ И ПР-ВО ДРЕВЕСНО-ПОЛИМЕРНЫХ КОМПОЗИТОВ