Математическая модель формирования глубины колеи лесной гусеничной машины

Авторы

  • Р.Ю. Добрецов Санкт-Петербургский политехнический университет Петра Великого https://orcid.org/0000-0002-3827-0220
  • С.Б. Добрецова Санкт-Петербургский политехнический университет Петра Великого https://orcid.org/0000-0002-8509-2105
  • С.А. Войнаш ООО «ПРО ФЕРРУМ» https://orcid.org/0000-0001-5239-9883
  • В.А. Соколова Военная академия связи им. Маршала Советского Союза С.М. Буденного https://orcid.org/0000-0001-6880-445X

DOI:

https://doi.org/10.37482/0536-1036-2022-2-132-145

Ключевые слова:

гусеничный движитель, деформируемый грунт, трелевочный трактор, скиддер, форвардер, нагрузка, осадка

Аннотация

Рассмотрено влияние внешних сил, действующих на шасси гусеничной машины и участвующих в перераспределении нормальных реакций на опорной поверхности движителя. При систематической эксплуатации лесозаготовительных и лесотранспортных гусеничных машин могут возникать условия, когда только часть опорной поверхности движителя передает нормальные и касательные реакции. В сочетании с «очаговой» передачей нормальных нагрузок, характеризующейся локальными максимумами нагрузки в области опорных катков, рассматриваемый эффект ведет к увеличению перегрузок, а также нормальной и касательной деформаций почвогрунта. В фундаментальных работах по теории движения гусеничных машин этот эффект практически не рассматривается, однако известны результаты наблюдений за ним и примеры его математического описания в смежной области – теории движения транспортных машин. Цель работы – предложить математическую модель, которая позволит оценивать глубину колеи гусеничной машины, прогнозировать энергозатраты в случае ее движения по деформируемым лесным почвогрунтам, учитывая эффект недоиспользования длины опорной поверхности гусеницы при контакте с почвогрунтом. Объектами исследования являются шасси скиддеров, форвардеров и харвестеров, созданных на базе гусеничных тракторов, а также шасси транспортеров-болотоходов и других транспортных и транспортно-технологических машин, используемых в лесозаготовительной и лесотранспортной промышленности. Сформулированы условия, при которых эпюра нормальных реакций под гусеницей приобретает форму треугольника и не захватывает опорную поверхность целиком. Предложены зависимости, позволяющие количественно оценить глубину формируемой колеи, работу при вертикальной деформации лесного почвогрунта и относительное увеличение мощности сопротивления движению шасси в зависимости от относительной эффективной длины опорной поверхности. В качестве иллюстрации использованы результаты расчетов для связного и слабосвязного почвогрутов. Разработанная модель применяется самостоятельно, но возможна и ее интеграция в методику расчетной оценки эксплуатационных параметров шасси машин.
Для цитирования: Добрецов Р.Ю., Добрецова С.Б., Войнаш С.А., Соколова В.А. Математическая модель формирования глубины колеи лесной гусеничной машины // Изв. вузов. Лесн. журн. 2022. № 2. С. 132–145. DOI: 10.37482/0536-1036-2022-2-132-145

Скачивания

Данные скачивания пока недоступны.

Биографии авторов

Р.Ю. Добрецов, Санкт-Петербургский политехнический университет Петра Великого

д-р техн. наук, доц.; ResearcherID: H-2530-2019

С.Б. Добрецова, Санкт-Петербургский политехнический университет Петра Великого

ассистент; ResearcherID: AEF-4221-2022

С.А. Войнаш, ООО «ПРО ФЕРРУМ»

инж.; ResearcherID: AAK-2987-2020

В.А. Соколова, Военная академия связи им. Маршала Советского Союза С.М. Буденного

канд. техн. наук, доц.; ResearcherID: AAK-6062-2020

Библиографические ссылки

Авотин Е.В., Добрецов Р.Ю. Методика расчета нормальных давлений на опорной поверхности гусеницы транспортной машины // Науч.-техн. вед. СП бГПУ . Сер.: Наука и образование. 2011. № 3. С. 103–108. Avotin E.V., Dobretsov R.Yu. Methods for Calculation of Normal Pressure, Acting on the Ground Contacting Area of the Track of the Transport Vehicle. Nauchno-tekhnicheskiye vedomosti SPbGPU. Ser.: Nauka i obrazovaniye [Materials Science. Power Engineering], 2011, no. 3, pp. 103–108.

Агейкин Я.С. Проходимость автомобилей. М.: Машиностроение, 1981. 230 с. Ageykin Ya.S. Passing Ability of Vehicles. Moscow, Mashinostroyeniye Publ., 1981. 230 p.

Акулов С.В., Дорогин С.В., Степанов В.Н. О сдвиге гусениц при прямолинейном движении танка // Вестн. бронетанковой техники. 1959. № 2. С. 48–52. Akulov S.V., Dorogin S.V., Stepanov V.N. On the Displacement of Tracks during Rectilinear Movement of a Tank. Vestnik bronetankovoy tekhniki, 1959, no. 2, pp. 48–52.

Анисимов Г.М., Кочнев А.М. Основные направления повышения эксплуатационной эффективности гусеничных трелевочных тракторов. СП б.: Политехн. ун-т, 2007. 455 с. Anisimov G.M., Kochnev A.M. Main Directions of Increasing the Operational Efficiency of Tracked Skidder. Saint Petersburg, SPbPU Publ., 2007. 455 p.

Беккер М.Г. Введение в теорию систем местность - машина: пер. с англ. М.: Машиностроение, 1973. 520 с. Becker M.G. Introduction to the Theory of Terrain-Machine Systems. Transl. from English. Moscow, Mashinostroyeniye, 1973. 520 p.

Веселов Н.Б. Вездеходные транспортно-технологические машины. Конструкции. Конструирование и расчет: моногр. Н. Новгород: РИ «Бегемот», 2010. 320 с. Veselov N.B. All-Terrain Transport and Technological Vehicles. Construction, Engineering and Calculation: Monograph. Nizhny Novgorod, RI “Begemot” Publ., 2010. 320 p.

Галышев Ю.В., Добрецов Р.Ю. Эффективность использования опорной поверхности гусеничного движителя при передаче нормальных нагрузок // Науч.-техн. вед. СП бГПУ . Сер.: Наука и образование. 2013. № 3(178). С. 272–278. Galishev Yu.V., Dobretsov R.Yu. Efficiency of the Usage of the Ground Contact Area of a Caterpillar Drive under Conditions of Transmitting the Normal Loads. Nauchno-tekhnicheskiye vedomosti SPbGPU. Ser.: Nauka i obrazovaniye [Materials Science. Power Engineering], 2013, no. 3(178), pp. 272–278.

Добрецов Р.Ю. Особенности работы гусеничного движителя в области малых удельных сил тяги // Тракторы и сельскохозяйственные машины. 2009. № 6. С. 25–31. Dobretsov R.Yu. Features of a Continuous Track in the Area of Low Specific Traction Forces. Traktory i sel’skokhozyaystvennyye mashiny, 2009, no. 6, pp. 25–31.

Добрецов Р.Ю. Объективная оценка технических характеристик шасси транспортных гусеничных машин // Тракторы и сельскохозяйственные машины. 2011. № 2. С. 19–23. Dobretsov R.Yu. Objective Assessment of Technical Characteristics of the Transport Caterpillar Vehicles’ Chassis. Traktory i sel’skokhozyaystvennyye mashiny, 2011, no. 2, pp. 19–23.

Добрецов Р.Ю. Модель взаимодействия гусеницы с грунтом при значительных продольных смещениях центра давления // Актуальные проблемы защиты и безопасности. Бронетанковая техника и вооружение: тр. XIX Всерос. науч.-практ. конф. Т. 3. / под ред. В.А. Петрова, М.В. Сильникова, А.М. Сазыкина. М.: Рос. акад. ракет. и артиллер. наук, 2016. C. 96–102. Dobretsov R.Yu. Model of Interaction of a Caterpillar with the Ground at Significant Longitudinal Displacements of the Pressure Center. Actual Problems of Protection and Safety. Armored Vehicles and Weapons. Proceedings of the XIX Scientific and Practical Conference. Vol. 3. Ed. by V.A. Petrov, M.V. Sil’nikov, A.M. Sazykin. Moscow, RARAN Publ., 2016, pp. 96–102.

Добрецов Р.Ю., Семёнов А.Г. О снижении перепадов нагрузки на опорное основание при качении гусеничного движителя // Экология и промышленность России. 2009. № 5. С. 46–49. Dobretsov R.Yu. The Ways of Reduction of Ecological Danger Due to Interaction of Vehicles Caterpillar Movers with Soilsю Ekologia i promyshlennost Rossii [Ecology and Industry of Russia], 2009, no. 5, pp. 46–49.

Добрецова С.Б., Добрецов Р.Ю. О выборе метода построения обобщенного отклика в задаче оценки энергоэффективности шасси транспортной гусеничной машины // Транспортные и транспортно-технологические системы. Тюмень: ТюмГНГУ, 2015. С. 99–103. Dobretsova S.B., Dobretsov R.Yu. On the Select Build Method of the Gen eralized Response in the Task of Assessing the Efficiency the Chassis of the Tracked Vehicle. Transport and Transport Technology Systems: Proceedings of the International Scientific and Practical Conference. Tyumen, TSOGU Publ., 2015, pp. 99–103.

Дорогин С.В., Карнаух В.П. Влияние размещения грунтозацепов на сопротивление движению ВГМ // Вестн. бронетанковой техники. 1989. № 11. С. 34–45. Dorogin S.V., Karnaukh V.P. Influence of the Placement of Grousers on the Resistance to Motion of Tracked Military Vehicles (VGM). Vestnik bronetankovoy tekhniki, 1989, no. 11, pp. 34–45.

Забавников Н.А. Основы теории транспортных гусеничных машин. М.: Машиностроение, 1975. 448 с. Zabavnikov N.A. Fundamentals of the Theory of Transport Tracked Vehicles. Moscow, Mashinostroyeniye Publ., 1975. 448 p.

Красненьков В.И., Ловцов Ю.И., Быко-Янко А.В. Нормальные давления под гусеницей // Тр. МВТУ им. Н.Э. Баумана. 1982. № 390. С. 3–12. Krasnen’kov V.I., Lovtsov Yu.I., Byko-Yanko A.V. Normal Pressures under the Track. Trudy MVTU imeni N.E. Baumana, 1982, no. 390, pp. 3–12.

Ксеневич И.П., Гуськов В.В., Бочаров Н.Ф., Атаманов Ю.Е., Тарасик В.П., Разумовский М.А. Тракторы. Проектирование, конструирование и расчет / под общ. ред. И.П. Ксеневича. М.: Машиностроение, 1991. 544 с. Ksenevich I.P., Gus’kov V.V., Bocharov N.F., Atamanov Yu.E., Tarasik V.P., Razumovskiy M.A. Tractors. Design, Construction and Calculation. Ed. by I.P. Ksenevich. Moscow, Mashinostroyeniye Publ., 1991. 544 p.

Куляшов А.П., Колотилин В.Е. Экологичность движителей транспортно-технологических машин. М.: Машиностроение, 1993. 288 с. Kulyashov A.P., Kolotilin V.E. Environmental Friendliness of Transport and Technological Vehicles. Moscow, Mashinostroyeniye Publ., 1993. 288 p.

Мазур А.И., Крюков В.В., Фадеев И.Ф. Механизм взаимодействия гусениц с грунтом // Вестн. бронетанковой техники. 1983. № 3. С. 52–55. Mazur A.I., Kryukov V.V., Fadeyev I.F. Mechanism of Interaction between Tracks and Ground. Vestnik bronetankovoy tekhniki, 1983, no. 3, pp. 52–55.

Носов С.В. Мобильные энергетические средства: выбор параметров и режимов работы через реологические свойства опорного основания: моногр. Липецк: ЛГТУ , 2006. 228 с. Nosov S.V. Mobile Power Facilities: The Choice of Parameters and Operating Modes through the Rheological Properties of the Support Base: Monograph. Lipetsk, LSTU Publ., 2006. 228 p.

Патякин В.И., Григорьев И.В., Редькин А.К., Иванов В.А., Пошарников Ф.В., Шегельман И.Р., Ширнин Ю.А., Кацадзе В.А., Валяжонков В.Д., Бит Ю.А., Матросов А.В., Куницкая О.А. Технология и машины лесосечных работ / под ред. В.И. Патякина. СП б.: СП бГЛТУ , 2012. 362 с. Patyakin V.I., Grigor’yev I.V., Red’kin A.K., Ivanov V.A., Posharnikov F.V., Shegel’man I.R., Shirnin Yu.A., Katsadze V.A., Valyazhonkov V.D., Bit Yu.A., Matrosov A.V., Kunitskaya O.A. Technology and Machines of Logging Operations. Ed. by V.I. Pyatyakin. Saint Petersburg, SPbFTU Publ., 2012. 362 p.

Расчет сопротивления движению гусеничной машины // Зарубежная военная техника. Сер. III: Бронетанковая техника и вооружение. 1977. Вып. 1. С. 25–27. Calculation of the Motion Resistance of a Tracked Vehicle. Zarubezhnaya voyennaya tekhnika. Ser. III: Bronetankovaya tekhnika i vooruzheniye, 1977, iss. 1, pp. 25–27.

Скотников В.А., Мащенский А.А., Солонский А.С. Основы теории и расчета трактора и автомобиля / под ред. В.А. С котникова. М.: Агропромиздат, 1986. 383 с. Skotnikov V.A., Mashchenskiy A.A., Solonskiy A.S. Fundamentals of Theory and Calculation of a Tractor and a Vehicle. Ed. by V.A. Skotnikov. Moscow, Agropromizdat Publ., 1986. 383 p.

Шарипов В.М. Конструирование и расчет тракторов. 2-е изд., перераб. и доп. М.: Машиностроение, 2009. 752 с. Sharipov V.M. Design and Calculation of Tractors. Moscow, Mashinostroyeniye Publ., 2009. 752 p.

Шеломов В.Б. Теория движения многоцелевых гусеничных и колесных машин. Тяговый расчет криволинейного движения. СП б.: Политехн. ун-т, 2013. 90 с. Shelomov V.B. Theory of Motion of Multipurpose Tracked and Wheeled Vehicles. Traction Calculation of Curvilinear Motion. Saint Petersburg, SPbPU Publ., 2013. 90 p.

Björheden R. Rutting and Vibration Levels of the On Track Concept Forwarder on Standardised Test Tracks. Arbetsrapport 989. Uppsala, Skogforsk, 2018. 28 p.

Bygdén G., Eliasson L., Wästerlund I. Rut Depth, Soil Compaction and Rolling Resistance when Using Bogie Tracks. Journal of Terramechanics, 2003, vol. 40, iss. 3, pp. 179–190. DOI: https://doi.org/10.1016/j.jterra.2003.12.001

Cambi M., Certini G., Neri F., Marchi E. The Impact of Heavy Traffic on Forest Soils: A Review. Forest Ecology and Management, 2015, vol. 338, pp. 124–138. DOI: https://doi.org/10.1016/j.foreco.2014.11.022

Edlund J., Keramati E., Servin M. A Long-Tracked Bogie Design for Forestry Machines on Soft and Rough Terrain. Journal of Terramechanics, 2013, vol. 50, iss. 2, pp. 73–83. DOI: https://doi.org/10.1016/j.jterra.2013.02.001

Gerasimov Yu., Katarov V. Effect of Bogie Track and Slash Reinforcement on Sinkage and Soil Compaction in Soft Terrains. Croatian Journal of Forest Engineering, 2010, vol. 31, iss. 1, pp. 35–45.

Grigorev I., Burmistrova O., Stepanishcheva M., Gasparian G. The Way to Reduce Ecological Impact on Forest Soils Caused by Wood Skidding. Proceedings of the 14th SGEM GeoConference on Water Resources. Forest, Marine and Ocean Ecosystems. Sofia, Bulgaria, STEF92 Technology Ltd., 2014, vol. 2, no. SGEM2014, pp. 501–508. DOI: https://doi.org/10.5593/SGEM2014/B32/S14.067

Grigorev I., Khitrov E., Kalistratov A., Stepanishcheva M. Dependence of Filtration Coefficient of Forest Soils to Its Density. Proceedings of the 14th SGEM Geo-Conference on Water Resources. Forest, Marine and Ocean Ecosystems. Sofia, Bulgaria, STEF92 Technology Ltd., 2014, pp. 339–344. DOI: https://doi.org/10.5593/SGEM2014/B32/S14.046

Haas J., Ellhöft K.H., Schack-Kirchner H., Lang F. Using Photogrammetry to Assess Rutting Caused by a Forwarder – A Comparison of Different Tires and Bogie Tracks. Soil and Tillage Research, 2016, vol. 163, pp. 14–20. DOI: https://doi.org/10.1016/j.still.2016.04.008

Huat B.B.K., Prasad A., Asadi A., Kazemian S. Geotechnics of Organic Soils and Peat. London, CRC Press, 2014. 250 p. DOI: https://doi.org/10.1201/b15627

Ivanov V., Stepanishcheva M., Khitrov E., Iliushenko D. Theoretical Model for Evaluation of Tractive Performance of Forestry Machine’s Wheel. Proceedings of the 18th International Multidisciplinary Scientific GeoConference SGEM: Surveying Geology and Mining Ecology Management. Sofia, Bulgaria, 2018, vol. 18, pp. 997–1003. DOI: https://doi.org/10.5593/sgem2018/3.2/S14.127

Jarkko L. Design Parameter Analysis of the Bogie Track Surface Pressure in Peatland Forest Operations. Master of Science Thesis. Tampere, TTY, 2018. 73 p.

Khitrov E., Andronov A., Bogatova E., Kotenev E. Development of Recommendations on Environmental Certification of Forestry Machinery Drives. Proceedings of the 19th International Multidisciplinary Scientific GeoConference SGEM: Surveying Geology and Mining Ecology Management. Sofia, Bulgaria, 2019, vol. 19, pp. 689–696. DOI: https://doi.org/10.5593/sgem2019/3.2/S14.089

Загрузки

Опубликован

2022-04-07

Как цитировать

Добрецов, Р., С. Добрецова, С. Войнаш, и В. Соколова. «Математическая модель формирования глубины колеи лесной гусеничной машины». Лесной журнал, вып. 2, апрель 2022 г., сс. 132-45, doi:10.37482/0536-1036-2022-2-132-145.

Выпуск

Раздел

ЛЕСОЭКСПЛУАТАЦИЯ