Numerical Study of the Stress-Strain State of a Modified Wooden Beam

Authors

DOI:

https://doi.org/10.37482/0536-1036-2022-3-167-178

Keywords:

numerical studies, polymer composition, modification of wooden beam, wood strength, wooden beam, wood destruction, loading of wooden beam, preservation of wooden architecture

Abstract

Preservation of wooden architecture monuments requires special attention since during their operation for 100 years and more wooden structures are exposed to environmental influences resulting in weakening their bearing capacity. The use of external reinforcement systems for buildings of historical value leads to a loss of architectural look. The proposed method of restoring the bearing capacity of the destructed wooden beams in the support zones is based on modification with a polymer composition. We have considered 3 types of pine beams: destructed, modified in the support zones; wooden, weakened by destruction; “healthy”. Numerical calculation of beams with a length of 6 m and a cross-section of 100×200 mm is performed in the Lira software package. The calculation model of the beams considered was created by adapting the initial data for the working environment of the software package used. The computational model is set as a three-dimensional body obtained by triangulation and “extrusion” of beam projection section. Shear stresses in the supporting zone, as well as vertical movements of the beams have been determined according to the developed method of calculation of wooden beams. The parameters of the modified beam and the reference “healthy” structure were compared. Shear stresses in the strengthened beam are 15–17 % higher than in the “healthy” beam. It was found that the strength of the destructed beam modified on supports increased by 16–18 % compared to the destructed beam. The boundary conditions for the modification of destructed wooden beams in the support zones to restore their bearing capacity have been determined on the basis of the obtained results. If the loss of bearing capacity is more than 35 %, then this method is not recommended due to the expediency of replacing such structures.

Downloads

Download data is not yet available.

Author Biographies

Danila A. Chibrikin, Vladimir State University named after Alexander and Nikolay Stoletovs

Postgraduate Student; ResearcherID: ACW-3805-2022

Mikhail V. Lukin, Vladimir State University named after Alexander and Nikolay Stoletovs

Candidate of Engineering, Assoc. Prof.; ResearcherID: E-8085-2019

Anastasiya V. Lukina, Vladimir State University named after Alexander and Nikolay Stoletovs

Candidate of Engineering, Assoc. Prof.; ResearcherID: O-1352-2016

Tatiana V. Tyurikova, Northern (Arctic) Federal University named after M.V. Lomonosov

Candidate of Engineering, Assoc. Prof.; ResearcherID: P-8991-2019

Svetlana I. Roshchina, Vladimir State University named after Alexander and Nikolay Stoletovs

Doctor of Engineering, Prof.; ResearcherID: A-7722-2019

References

Карельский А.В., Лабудин Б.В., Мелехов В.И. Требования к надежности и безопасной эксплуатации большепролетных клееных деревянных конструкций // Изв. вузов. Лесн. журн. 2012. № 3. С. 143–147. Karelskiy A.V., Labudin B.V., Melekhov V.I. Reliability Requirements for the Large-Span Laminated Wood Structural Elements. Lesnoy Zhurnal = Russian Forestry Journal, 2012, no. 3, pp. 143–147. (In Russ.). http://lesnoizhurnal.ru/upload/iblock/d47/pawx2.pdf

Лабудин Б.В., Морозов В.С., Орлов А.О. Компьютерный расчет напряженно-деформированного состояния узлового соединения // Вестн. ПГТУ . Сер.: Материалы. Конструкции. Технологии. 2019. № 3. С. 45–51. Labudin B.V., Morozov V.S., Orlov A.O. Computer Calculation of Stress-Strain State of Node Connection. Vestnik of Volga State University of Technology. Series: Materials. Constructions. Technologies, 2019, no. 3, pp. 45–51. (In Russ.). https://doi.org/10.25686/2542114X.2019.3.45

Матвеев Р.П., Лабудин Б.В., Морозов В.С., Орлов А.О. Численный анализ прочности и жесткости биомеханической системы «кость – аппарат» // Экология человека. 2017. Т. 24, № 4. C. 58–64. Matveev R.P., Labudin B.V., Morozov V.S., Orlov A.O. Numerical Analysis of Strength and Rigidity of the Biomechanical System “Bone-Apparatus”. Ekologiya cheloveka = Human Ecology, 2017, vol. 24, no. 4, pp. 58–64. (In Russ.). https://doi.org/10.33396/17280869-2017-4-58-64

Рощина С.И., Лукин М.В., Лукина А.В., Лисятников М.С. Повышение эксплуатационных свойств древесины, ослабленной биоповреждением, путем модификации клеевой композицией на основе эпоксидной смолы // Науч.-техн. вестн. Поволжья. 2014. № 4. С. 182–184. Roshchina S.I., Lukin M.V., Lukina A.V., Lisyatnikov M.S. Increased Performance Properties Wood Weakened Biodeterioration by Modifying the Adhesive Composition Based on an Epoxy Resin. Scientific and Technical Volga Region Bulletin, 2014, no. 4, pp. 182–184. (In Russ.).

Рощина С.И., Лукин М.В., Лукина А.В., Лисятников М.С. Восстановление деревянной балки импрегнированием полимерной композицией на основе эпоксидной смолы // Лесотехн. журн. 2015. № 3(19). С. 183–190. Roshchina S.I., Lukin M.V., Lukinф A.V., Lisyatnikov M.S. Recovery Wooden Beams Impregnating Polymer Composition Based on Epoxy Resins. Forestry Engineering Journal, 2015, no. 3(19), pp. 183–190. (In Russ.). https://doi.org/10.12737/14167

Рощина С.И., Смирнов Е.А., Лукин М.В., Лукина А.В., Грибанов А.С. Восстановление деструктивных участков опорных зон деревянных балок путем пропитки полимерным раствором // Науч.-техн. вестн. Поволжья. 2014. № 5. С. 293–296. Roshchina S.I., Smirnov E.A., Lukin M.V., Lukinф A.V., Gribanov A.S. Destructive Recovery Phase Reference Zone Wooden Beams by Impregnation of the Polymer Solution. Scientific and Technical Volga Region Bulletin, 2014, no. 5, pp. 293–296. (In Russ.).

Adamu M., Rahman Md. R., Hamdan S., Khusairy M., Bakri B., Yusof F.A.B.M. Impact of Polyvinyl Alcohol/Acrylonitrile on Bamboo Nanocomposite and Optimization of Mechanical Performance by Response Surface Methodology. Construction and Building Materials, 2020, vol. 258, art. 119693. https://doi.org/10.1016/j.conbuildmat.2020.119693

Borri A., Corradi M., Speranzini E. Reinforcement of Wood with Natural Fibers. Composites Part B: Engineering, 2013, vol. 53, pp. 1–8. https://doi.org/10.1016/j.compositesb.2013.04.039

Chernova T.P., Filippov V.V., Labudin B.V., Melekhov V.I. Stress-Strain State of the Elements of a Timber-to-Timber Joint Connected by Inclined Screwed-In Rods. Environmen tal and Construction Engineering: Reality and the Future. Ed. by S.V. Klyuev, A.V. Klyuev. Springer, 2021, pp. 101–107. https://doi.org/10.1007/978-3-030-75182-1_14

D’Ambrisia А., Focacci F., Luciano R. Experimental Investigation on Flexural Behavior of Timber Beams Repaired with CFRP Plates. Composite Structures, 2014, vol. 108, рр. 720–728. https://doi.org/10.1016/j.compstruct.2013.10.005

Dietsch P., Kreuzinger H. Dynamic Effects in Reinforced Beams at Brittle Failure – Evaluated for Timber Members. Engineering Structures, 2020, vol. 209, art. 110018. https://doi.org/10.1016/j.engstruct.2019.110018

Dietsch P., Winter S. Structural Failure in Large-Span Timber Structures: A Comprehensive Analysis of 230 Cases. Structural Safety, 2018, vol. 71, pp. 41–46. https://doi.org/10.1016/j.strusafe.2017.11.004

Esmailpour A., Majidi R., Taghiyari H.R., Ganjkhani M., Mohseni Armaki S.M., Papadopoulos A.N. Improving Fire Retardancy of Beech Wood by Graphene. Polymers, 2020, vol. 12(2), art. 303. https://doi.org/10.3390/polym12020303

Franke S., Franke B., Harte A.M. Failure Modes and Reinforcement Techniques for Timber Beams – State of the Art. Construction and Building Materials, 2015, vol. 97, pp. 2–13. https://doi.org/10.1016/j.conbuildmat.2015.06.021

Frese M., Blaß H.J. Statistics of Damages to Timber Structures in Germany. Engineering Structures, 2011, vol. 33, iss. 11, pp. 2969–2977. https://doi.org/10.1016/j.engstruct.2011.02.030

Gentile C., Svecova D., Rizkalla S.H. Timber Beams Strengthened with GFRP Bars: Development and Applications. Journal of Composites for Construction, 2002, vol. 6, iss. 1, art. 11. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:1(11)

Khelifa M., Celzard A. Numerical Analysis of Flexural Strengthening of Timber Beams Reinforced with CFRP Strips. Composite Structures, 2014, vol. 111, рр. 393–400. https://doi.org/10.1016/j.compstruct.2014.01.011

Kim Y.J., Harries K.A. Modeling of Timber Beams Strengthened with Various CFRP Composites. Engineering Structures, 2010, vol. 32, iss. 10, pp. 3225–3234. https://doi.org/10.1016/j.engstruct.2010.06.011

Kolya H., Kang C.-W. Polyvinyl Acetate/Reduced Graphene Oxide-Poly (Diallyl Dimethylammonium Chloride) Composite Coated Wood Surface Reveals Improved Hydrophobicity. Progress in Organic Coatings, 2021, vol. 156, art 106253. https://doi.org/10.1016/j.porgcoat.2021.106253

Koshcheev A.A., Roshchina S.I., Aleksiievets V., Labudin B.V. Local Deformation and Strength Characteristics of S-Shaped Reinforcement in Wood. IOP Conference Series: Materials Science and Engineering, 2020, vol. 896, art. 012060. https://doi.org/10.1088/1757899X/896/1/012060

Koshcheev A.A., Roshchina S.I., Naichuk A.Y., Vatin N.I. The Effect of Eccentricity on the Strength Characteristics of Glued Rods Made of Steel Cable Reinforcement in Solid Wood. IOP Conference Series: Materials Science and Engineering, 2020, vol. 896, art. 012059. https://doi.org/10.1088/1757899X/896/1/012059

Kreher K., Natterer J., Natterer J. Timber-Glass-Composite Girders for a Hotel in Switzerland. Structural Engineering International, 2004, vol. 14, iss. 2, pp. 149–168. https://doi.org/10.2749/101686604777963964

Lukin M., Prusov E., Roshchina S., Karelina M., Vatin N. Multi-Span Composite Timber Beams with Rational Steel Reinforcements. Buildings, 2021, vol. 11, iss. 2, art. 46. https://doi.org/10.3390/buildings11020046

Lukin M., Sergeev M., Lisyatnikov M. Non Split Wooden Beam Reinforced with Composite Reinforcement. Proceedings of EECE 2020. Cham, Springer, 2021, pp. 115–123. https://doi.org/10.1007/978-3-030-72404-7_12

Lukina A., Roshchina S., Gribanov A. Method for Restoring Destructed Wooden Structures with Polymer Composites. Proceedings of EECE 2020. Cham, Springer, 2021, pp. 464–474. https://doi.org/10.1007/978-3-030-72404-7_45

Marzi T. Nanostructured Materials for Protection and Reinforcement of Timber Structures: A Review and Future Challenges. Construction and Building Materials, 2015, vol. 97, pp. 119–130. https://doi.org/10.1016/j.conbuildmat.2015.07.016

Nowak T., Jasieńko J., Kotwica E., Krzosek S. Strength Enhancement of Timber Beams Using Steel Plates – Review and Experimental Tests. Drewno, 2016, vol. 59, no. 196, pp. 75–90. http://dx.doi.org/10.12841/wood.1644-3985.150.06

Orlando N., Taddia Yu., Benvenuti E., Pizzo B., Alessandri C. End-Repair of Timber Beams with Laterally-Loaded Glued-In Rods: Experimental Trials and Failure Prediction through Modelling. Construction and Building Materials, 2019, vol. 195, pp. 623–637. https://doi.org/10.1016/j.conbuildmat.2018.11.045

Papadopoulos A.N., Bikiaris D.N., Mitropoulos A.C., Kyzas G.Z. Nanomaterials and Chemical Modifications for Enhanced Key Wood Properties: A Review. Nanomaterials, 2019, vol. 9, iss. 4, art. 607. https://doi.org/10.3390/nano9040607

Raftery G.M., Harte A.M. Low-Grade Glued Laminated Timber Reinforced with FRP Plate. Composites Part B: Engineering, 2011, vol. 42, iss. 4, pp. 724–735. https://doi.org/10.1016/j.compositesb.2011.01.029

Raftery G.M., Whelanb C. Low-Grade Glued Laminated Timber Beams Reinforced Using Improved Arrangements of Bonded-In GFRP Rods. Construction and Building Materials, 2014, vol. 52, рр. 209–220. https://doi.org/10.1016/j.conbuildmat.2013.11.044

Sergeev M.S., Gribanov A.S., Roschina S.I. The Stress Strain State of Composite Multi-Span Beams. IOP Conference Series: Materials Science and Engineering, 2020, vol. 753, art. 032068. https://doi.org/10.1088/1757-899X/753/3/032068

Sergeev M., Rimshin V., Lukin M., Zdralovic N. Multi-Span Composite Beam. IOP Conference Series: Materials Science and Engineering, 2020, vol. 896, art. 012058. https://doi.org/10.1088/1757-899X/896/1/012058

Stupnicki J. Analysis of the Behavior of Wood under External Load, Based on a Study of the Cell Structure. Acta Polytechnica Scandinavica Civil Engineering and Building Construction Series, 1962, vol. 53. 19 p.

Teng T.-J., Mat Arip M.N., Sudesh K., Nemoikina A., Jalaludin Z., Ng E.-P., Lee H.-L. Conventional Technology and Nanotechnology in Wood Preservation: A Review. BioResources, 2018, vol. 13, no. 4, pp. 9220–9252. https://doi.org/10.15376/biores.13.4.Teng

Vlad-Cristea M., Riedl B., Blanchet P., Jimenez-Pique E. Nanocharacterization Techniques for Investigating the Durability of Wood Coatings. European Polymer Journal, 2012, vol. 48, iss. 3, pp. 441–453. https://doi.org/10.1016/j.eurpolymj.2011.12.002

Yahyaei-Moayyed M., Taheri F. Experimental and Computational Investigations into Creep Response of AFRP Reinforced Timber Beams. Composite Structures, 2011, vol. 93, iss. 2, pp. 616–628. https://doi.org/10.1016/j.compstruct.2010.08.017

Published

2022-06-08

How to Cite

Chibrikin Д. ., Lukin М. ., Lukina А. ., Tyurikova Т. ., and Roshchina С. . “Numerical Study of the Stress-Strain State of a Modified Wooden Beam”. Lesnoy Zhurnal (Forestry Journal), no. 3, June 2022, pp. 167-78, doi:10.37482/0536-1036-2022-3-167-178.

Issue

Section

MECHANICAL TECHNOLOGY OF WOOD AND WOOD SCIENCE

Most read articles by the same author(s)