Kinetics of Water-Alkaline Hydrolysis of Birch Bark in a Microwave Field

Authors

DOI:

https://doi.org/10.37482/0536-1036-2022-3-179-190

Keywords:

birch bark, silver bark, suberin, microwave field, water-alkaline hydrolysis, diffusion coefficient

Abstract

Birch bark consists of silver bark and bast. Silver bark contains up to 50 % of extractives and serves as a raw material for obtaining valuable biologically active substances (BAS), including betulin. A distinctive feature of the birch bark structure is a cross-linked polymer, suberin. Its monomers are suberic acids. They have found use in the production of lubricants, oils, insecticides, fungicides, polymers, polyesters, coatings, etc. A common method for extracting suberic acid salts from silver bark is exhaustive hydrolysis with an aqueous or water-alcohol solution of alkali (NaOH or KOH). We have proposed the activation of raw materials during hydrolysis by using an ultrahigh-frequency electromagnetic field (microwave hydrolysis). Isolation of suberin from silver bark is both a chemical and mass transfer process. Salts that are formed during hydrolysis of suberic acids diffuse to the surface of silver bark particles and pass into the hydrolysate. The limiting stage of mass transfer during birch bark hydrolysis is internal diffusion in the pores (mass conductivity). The anisotropy of the silver bark structure complicates the mathematical description of the mass transfer kinetics in the diffusion process. The process of internal diffusion during microwave hydrolysis is characterized by a steady regime starting from the 4th minute. The kinetics of this process and the effectiveness of diffusion in the tangential and longitudinal directions were determined. As the size of birch bark particles increases in both length (tangential direction) and width (longitudinal direction), the rate of the hydrolysis process and the degree of suberin isolation increase. Internal diffusion coefficients during microwave bark hydrolysis were determined. The highest value was obtained for fractions with a particle size of 3–4.5 mm (silver bark); the lowest – for fractions less than 1 mm (bast). The article shows that the small fraction (bast) should be separated and silver bark should be cut along the fiber in order to increase the yield of suberin after birch bark grinding.

Downloads

Download data is not yet available.

Author Biographies

Elena N. Koptelova, Northern (Arctic) Federal University named after M.V. Lomonosov

Candidate of Engineering, Assoc. Prof.; ResearcherID: AAI-4768-2020

Natal’ya A. Kutakova, Northern (Arctic) Federal University named after M.V. Lomonosov

Candidate of Engineering, Assoc. Prof.; ResearcherID: T-1150-2019

Sergey I. Tret’yakov, Northern (Arctic) Federal University named after M.V. Lomonosov

Candidate of Engineering, Prof.; ResearcherID: S-2192-2019

Anna V. Faleva, Northern (Arctic) Federal University named after M.V. Lomonosov

Junior Research Scientist; ResearcherID: AAZ-1879-2020

References

А.с. 382657 ССС Р, МКИ 1 С 08h 5/04. Способ выделения бетулина и суберина: № 1472003/23-4: заявл. 14.08.1970: опубл. 23.05.1973 / Т.И. Федорищев, В.Г. Калайков. Fedorishchev T.I., Kalaykov V.G. Method for Isolation of Betulin and Suberin. Certificate of Authorship USSR, no. SU 382657 A1, 1973. (In Russ.).

Безумова А.В., Третьяков С.И., Кутакова Н.А., Коптелова Е.Н. Извлечение субериновых кислот из бересты при воздействии СВЧ-поля // Химия растит. сырья. 2018. № 1. С. 21–28. Bezumova A.V., Tret’iakov S.I., Kutakova N.A., Koptelova E.N. Extracting Suberin Acids from Birch Bark when Exposed to a Microwave Field. Khimija Rastitel’nogo Syr’ja = Chemistry of Plant Raw Materials, 2018, no. 1, рр. 21–28. (In Russ.). https://doi.org/10.14258/jcprm.2018012560

Кислицын А.Н. Экстрактивные вещества бересты: выделение, состав, свойства, применение. Обзор // Химия древесины. 1994. № 3. С. 3–28. Kislitsyn A.N. Extractive Substances of Birch Bark: Isolation, Composition, Properties and Application. Review. Khimiya drevesiny, 1994, no. 3, рр. 3–28. (In Russ.).

Коптелова Е.Н., Кутакова Н.А., Третьяков С.И. Исследование кинетики массопереноса в процессе экстрагирования бересты // Изв. вузов. Лесн. журн. 2013. № 4. С. 119–128. Koptelova E.N., Kutakova N.A., Tretyakov S.I. Study of Mass Transfer Kinetics during Birch Bark Extraction. Lesnoy Zhurnal = Russian Forestry Journal, 2013, no. 4, pp. 119–128. (In Russ.). http://lesnoizhurnal.ru/upload/iblock/22b/x5.pdf

Коптелова Е.Н., Кутакова Н.А., Третьяков С.И. Извлечение экстрактивных веществ и бетулина из бересты при воздействии СВЧ-поля // Химия растит. сырья. 2013. № 4. С. 159–164. Koptelova E.N., Kutakova N.A., Tretyakov S.I. Removing the Extractives and Betulin from Birch Bark Exposed Microwave Field. Khimija Rastitel’nogo Syr’ja = Chemistry of Plant Raw Materials, 2013, no. 4, рр. 159–164. (In Russ.). https://doi.org/10.14258/jcprm.1304159

Кузнецов Б.Н., Левданский В.А., Еськин А.П., Полежаева Н.И. Выделение бетулина и суберина из коры березы, активированной в условиях «взрывного автогидролиза» // Химия растит. сырья. 1998. № 1. С. 5–9. Kuznetsov B.N., Levdanskiy V.A., Es’kin A.P., Polezhayeva N.I. Isolation of Betulin and Suberin from Birch Bark Activated in Conditions of “Explosive Autohydrolysis”. Khimija Rastitel’nogo Syr’ja = Chemistry of Plant Raw Materials, 1998, no. 1, рр. 5–9. (In Russ.).

Кутакова Н.А., Богданович Н.И., Селянина С.Б., Коптелова Е.Н., Коровкина Н.В. Лабораторный практикум по технологии биологически активных веществ и углеродных адсорбентов: в 2 ч. Ч. 2. Анализ БАВ. Архангельск: СА ФУ, 2015. 114 с. Kutakova N.A., Bogdanovich N.I., Selyanina S.B., Koptelova E.N., Korovkina N.V. Laboratory Workshop on the Technology of Biologically Active Substances and Carbon Adsorbents: 2 Parts. Part 2. Analysis of BAS. Arkhangelsk, NarFU Publ., 2015. 114 p. (In Russ.).

Макаревич Н.А., Третьяков С.И., Богданович Н.И. К инетическая модель массопереноса на межфазных границах с участием компонентов растительного сырья // Физикохимия поверхности и защита материалов. 2019. Т. 55, № 6. С. 601–609. Makarevich N.A., Tret’yakov S.I., Bogdanovich N.I. Kinetic Model of Mass Transfer at Interfaces with Components of Plant Products. Fizikokhimiya poverkhnosti i zashchita materialov = Protection of Metals and Physical Chemistry of Surfaces, 2019, vol. 55, no. 6, pp. 601–609. (In Russ.). https://doi.org/10.1134/S0044185619050164

Макаревич Н.А., Богданович Н.И., Третьяков С.И., Коптелова Е.Н. Кинетическая модель межфазовых процессов с участием компонентов растительного сырья // Химия растит. сырья. 2014. № 4. С. 251–262. Makarevich N.A., Bogdanovich N.I., Tretiakov S.I., Koptelova E.N. Kinetic Model of Interphase Processes with Participation of Components of Plant Raw Materials. Khimija Rastitel’nogo Syr’ja = Chemistry of Plant Raw Materials, 2014, no. 4, pp. 251–262. (In Russ.). https://doi.org/10.14258/jcprm.201404208

Патент 2264411 РФ, C1, МПК C07J 53/00 (2006.01), C07J 63/00 (2006.01). Способ получения бетулина: № 2004122661/04: заявл. 23.07.2004: опубл. 20.11.2005 / С.А. Кузнецова, Б.Н. Кузнецов, А.Г. Михайлов, В.А. Левданский. Kuznetsova S.A., Kuznetsov B.N., Mihajlov A.G., Levdanskij V.A. Method for Production of Betulin. Patent RF no. RU 2 264 411 C1, 2005. (In Russ.).

Патент 2618892 РФ, С1 A61K 36/185(2006.01), B01D 11/02(2006.01), A61K 129/00(2006.01). Способ комплексной переработки коры березы: № 2016120506: заявл. 25.05.2016: опубл. 11.05.2017 / Б.Н. Кузнецов, И.Г. Судакова, С.А. Кузнецова, Л.И. Гришечко, Г.П. Скворцова, Е.В. Веприкова, В.А. Левданский. Kuznetsov B.N., Sudakova I.G., Kuznetsova S.A., Grishechko L.I., Skvortsova G.P., Veprikova E.V., Levdanskij V.A. Method for Complex Processing of Birch Bark. Patent RF no. RU 2 618 892 C1, 2017. (In Russ.).

Судакова И.Г., Гарынцева Н.В., Кузнецов Б.Н. Получение древесных плитных материалов с использованием связующих на основе суберина березовой коры // Химия растит. сырья. 2011. № 3. С. 65–68. Sudakova I.G., Garyntseva N.V., Kuznetsov B.N. Production of Wood Fiber Boards with the Use of Birch Bark Suberin-Derived Binding Agents. Khimija Rastitel’nogo Syr’ja = Chemistry of Plant Raw Materials, 2011, no. 3, pp. 65–68. (In Russ.).

Судакова И.Г., Иванов И.П., Иванченко Н.М., Кузнецов Б.Н. Защитные составы для древесины на основе суберина коры березы // Химия растит. сырья. 2005. № 1. С. 59–63. Sudakova I.G., Ivanov I.P., Ivanchenko N.M., Kuznetsov B.N. Protective Compositions for Wood Based on Birch Bark Suberin. Khimija Rastitel’nogo Syr’ja = Chemistry of Plant Raw Materials, 2005, no. 1, pp. 59–63. (In Russ.).

Судакова И.Г., Кузнецов Б.Н., Иванов И.П., Иванченко Н.М. Получение пленкообразующих материалов из суберина коры березы повислой // Химия растит. сырья. 2004. № 1. С. 31–34. Sudakova I.G., Kuznetsov B.N., Ivanov I.P., Ivanchenko N.M. Film-Forming Materials Production from Birch Bark Suberin. Khimija Rastitel’nogo Syr’ja = Chemistry of Plant Raw Materials, 2004, no. 1, pp. 31–34. (In Russ.).

Третьяков С.И., Коптелова Е.Н., Кутакова Н.А., Владимирова Т.М., Богданович Н.И. Бетулин: получение, применение, контроль качества: моногр. Архангельск: СА ФУ, 2015. 180 с. Tret’yakov S.I., Koptelova E.N., Kutakova N.A., Vladimirova T.M., Bogdanovich N.I. Betulin: Receiving, Use and Quality Control. Arkhangelsk, NArFU Publ., 2015. 180 p. (In Russ.).

Черняева Г.Н., Долгодворова С.Я., Бондаренко С.М. Экстрактивные вещества березы. Красноярск: ИЛ иД, 1986. 123 с. Chernyayeva G.N., Dolgodvorova S.Ya., Bondarenko S.M. Extractive Substances of Birch. Krasnoyarsk, ILiD Publ., 1986. 123 p. (In Russ.).

Armbruste M., Mönckedieck M., Scherließ R., Daniels R., Wahl M.A. Birch Bark Dry Extract by Supercritical Fluid Technology: Extract Characterisation and Use for Stabilisation of Semisolid Systems. Applied Sciences, 2017, vol. 7, iss. 3, art. 292. https://doi.org/10.3390/app7030292

Ekman R. The Suberin Monomers and Triterpenoids from the Outer Bark of Betula verrucosa Ehrh. Holzforschung, 1983, vol. 37, iss. 4, pp. 205–211. https://doi.org/10.1515/hfsg.1983.37.4.205

Ferreira R., Garcia H., Sousa A.F., Freire C.S.R., Silvestre A.J.D., Rebelo L.P.N., Pereira C.S. Isolation of Suberin from Birch Outer Bark and Сork Using Ionic Liquids: A New Source of Macromonomers. Industrial Crops and Products, 2013, vol. 44, pp. 520–527. https://doi.org/10.1016/j.indcrop.2012.10.002

Gandini A., Neto C.P., Silvestre A.J.D. Suberin: A Promising Renewable Resource for Novel Macromolecular Materials. Progress in Polymer Science, 2006, vol. 31, iss. 10, pp. 878–892. https://doi.org/10.1016/j.progpolymsci.2006.07.004

Hamanaka S., Suzuki A., Hara M., Nishio H., Otsuka F., Uchida Y. Human Epidermal Glucosylceramides are Major Precursors of Stratum Corneum Ceramides. Journal of Investigative Dermatology, 2002, vol. 119, iss. 2, pp. 416–423. https://doi.org/10.1046/j.1523-1747.2002.01836.x

Kolattukudy P.E. Biopolyester Membranes of Plants: Cutin and Suberin. Science, 1980, vol. 208, no. 4447, pp. 990–1000. https://doi.org/10.1126/science.208.4447.990

Krasutsky P.A., Carlson R.M., Kolomitsyn I.V. Isolation of Natural Products from Birch Bark. Patent US no. US 6,768,016 B2, 2004.

Krasutsky P.A., Carlson R.M., Nesterenko V.V., Kolomitsyn I.V., Edwardson C.F. Birch Bark Processing and the Isolation of Natural Products from Birch Bark. Patent US no. US 2005/O158414 A1, 2005.

Mandal V., Mohan Y., Hemalatha S. Microwave Assisted Extraction – an Innovative and Promising Extraction Tool for Medicinal Plant Research. Pharmacognosy Reviews, 2007, vol. 1, iss. 1, pp. 7–18.

Microwave-Assisted Extraction for Bioactive Compounds. Ed. by F. Chemat, G. Cravotto. New York, Springer, 2013. 238 p. https://doi.org/10.1007/978-1-4614-4830-3

Pinto P.C.R.O., Souza A.F., Silvestre A.J.D., Neto C.P., Gandini A., Eckerman C., Holmbom B. Quercus suber and Betula pendula Outer Barks as Renewable Sources of Oleochemicals: A Comparative Study. Industrial Crops and Products, 2009, vol. 29, iss. 1, pp. 126–132. https://doi.org/10.1016/j.indcrop.2008.04.015

Pollard M., Beisson F., Li Y., Ohlrogge J.B. Building Lipid Barriers: Biosynthesis of Cutin and Suberin. Trends in Plant Science, 2008, vol. 13, iss. 5, pp. 236–246. https://doi.org/10.1016/j.tplants.2008.03.003

Rižikovs J., Zandersons J., Paže A., Tardenaka A., Spince B. Isolation of Suberinic Acids from Extracted Outer Birch Bark Depending on the Application Purposes. Baltic Forestry, 2014, vol. 20, no. 1, pp. 98–105.

Schweizer P., Felix G., Buchala A., Müller C., Métraux J.-P. Perception of Free Cutin Monomers by Plant Cells. The Plant Journal, 1996, vol. 10, iss. 2, pp. 331–341. https://doi.org/10.1046/j.1365-313X.1996.10020331.x

Von Wettstein-Knowles P.M. Waxes, Cutin, and Suberin. Lipid Metabolism in Plants. Ed. by T.S. Moore. CRC Press, 2018, pp. 127–166. https://doi.org/10.1201/9781351074070-5

Yang Y., Lu W., Zhang X., Xie W., Cai M., Gross R.A. Two-Step Biocatalytic Route to Biobased Functional Polyesters from ω-Carboxy Fatty Acids and Diols. Biomacromolecules, 2010, vol. 11, no. 1, pp. 259–268. https://doi.org/10.1021/bm901112m

Published

2022-06-08

How to Cite

Koptelova Е. ., Kutakova Н. ., Tret’yakov С. ., and Faleva А. . “Kinetics of Water-Alkaline Hydrolysis of Birch Bark in a Microwave Field”. Lesnoy Zhurnal (Forestry Journal), no. 3, June 2022, pp. 179-90, doi:10.37482/0536-1036-2022-3-179-190.

Issue

Section

TECHNOLOGY OF WOOD CHEMICAL PROCESSING AND PRODUCTION OF WOOD-POLYMER COMPOSITES

Most read articles by the same author(s)