Improving the Efficiency of Energy Use of Biofuels

Authors

DOI:

https://doi.org/10.37482/0536-1036-2023-1-172-185

Keywords:

boiler, wood fuel, bio-coal pellets, hydrolysis lignin, harmful substances, heat losses, efficiency, layer-vortex combustion

Abstract

The share of thermal power plants that consume renewable energy resources is growing worldwide. Wood and bio-coal pellets become more and more common as fuels. The technological cycle of pulp and paper production produces a large amount of wood waste, which must be used efficiently. However, bark-wood waste is hard-burning fuel, which causes the need to “light” the flare with high-calorie non-renewable fuel, is followed by the formation of carbon dioxide emitted into the atmosphere. Boilers KM-75-40, taken out of production in 1985, are still used at Russian enterprises for the use of bark-wood fuel as an energy source. Energy examination of the boiler KM-75-40 during its operation with bark-wood fuel (coniferous and deciduous wood bark, substandard chips and sawdust) showed that the design and technical condition of the boiler does not provide the required combustion rate of fuel components and environmental parameters that meet the requirements of the state standard, GOST. The present work aims at analyzing the possibilities of comprehensive improvement of efficiency of bark-wood fuel combustion in boilers KM-75-40. Highriority measures to improve the efficiency of these boilers were developed based on the research results. Boilers KM-75-40 have been in operation for more than 50 years and require replacement with modern low-emission heat generating systems. Prior to replacement, however, upgrading the boilers is recommended: their transition to the layer-vortex combustion technology and the use of biocoal pellets, as an additive to the bark-wood fuel, in order to adjust the thermal characteristics of the combusted biofuel and steam capacity of the boilers. Bio-coal pellets produced from hydrolysis lignin, which has undergone soft pyrolysis, are promising for this purpose. Thermal and aerodynamic calculations of the boiler KM-75-40 with different proportion of pellets by heat release, as well as thermogravimetric studies were carried out to assess the effectiveness of co-combustion of bark-wood fuel and bio-coal pellets. The thermal calculation included: the circulation rate of fuel particles in the vortex zone, the granulometric composition of the combusted fuel mixture, the location features of combustion equipment, reducing the contamination of the heating surface. The transition to the combustion of this fuel mixture using the layer-vortex technology will allow to refuse from using non-renewable fuels in the boiler KM-75-40 when combusting high-moisture bark-wood fuel, will significantly increase the boiler efficiency and reduce the negative impact on the environment.
For citation: Lyubov V.K., Tsypnyatov I.I. Improving the Efficiency of Energy Use of Biofuels. Lesnoy Zhurnal = Russian Forestry Journal, 2023, no. 1, pp. 172–185. (In Russ.). https://doi.org/10.37482/0536-1036-2023-1-172-185

Downloads

Download data is not yet available.

Author Biographies

Victor K. Lyubov, Northern (Arctic) Federal University named after M.V. Lomonosov

Doctor of Engineering, Prof.; ResearcherID: AAF-8949-2019

Ilya I. Tsypnyatov, Northern (Arctic) Federal University named after M.V. Lomonosov

Junior Research Scientist

References

Башмаков И.А., Мышак А.Д. Затраты и выгоды реализации стратегий низкоуглеродного развития России: перспективы до 2050 г. // Вопр. экономики. 2014. № 8. С. 70–91. Bashmakov I., Myshak A. Costs and Benefits of the Transition to Low-Carbon Economy in Russia: Perspectives up to 2050. Voprosy Ekonomiki, 2014, no. 8, pp. 70–91. (In Russ.). https://doi.org/10.32609/0042-8736-2014-8-70-91

Головков С.И., Коперин И.Ф., Найденов В.И. Энергетическое использование древесных отходов. М.: Лесн. пром-сть, 1987. 221 с. Golovkov S.I., Koperin I.F., Naydenov V.I. Energy Use of Wood Waste. Moscow, Lesnaya promyshlennost’ Publ., 1987. 221 p. (In Russ.).

Жучков П.А. Тепловые процессы в целлюлозно-бумажном производстве. М.: Лесн. пром-сть, 1978. 407 с. Zhuchkov P.A. Thermal Processes in Pulp and Paper Production. Moscow, Lesnaya promyshlennost’ Publ., 1978. 407 p. (In Russ.).

Кокорин А. Новые факторы и этапы глобальной и российской климатической политики // Экон. политика. 2016. Т. 11, № 1. С. 157–176. Kokorin A.O. New Factors and Stages of the Global and Russian Climate Policy. Economic Policy, 2016, vol. 11, no. 1, pp. 157–176. (In Russ.). https://doi.org/10.18288/1994-5124-2016-1-10

Любов В.К., Владимиров А.М. Комплексная эффективность применения древесных гранул в энергоустановках // Изв. вузов. Лесн. журн. 2021. № 1. С. 159–172. Lyubov V.K., Vladimirov A.M. Complex Efficiency of Using Wood Pellets in Power Plants. Lesnoy Zhurnal = Russian Forestry Journal, 2021, no. 1, pp. 159–172. (In Russ.). https://doi.org/10.37482/0536-1036-2021-1-159-172

Любов В.К., Любова С.В. Повышение эффективности энергетического использования биотоплив. Архангельск: САФУ, 2017. 533 с. Lyubov V.K., Lyubova S.V. Efficiency Improvement of the Biofuels Energy Use. Arkhangelsk, NArFU Publ., 2017. 533 p. (In Russ.).

Макаров И.А., Чен Х., Пальцев С.В. Последствия Парижского климатического соглашения для экономики России // Вопр. экономики. 2018. № 4. С. 76–94. Makarov I.A., Chen H., Paltsev S.V. Impacts of Paris Agreement on Russian Economy. Voprosy Ekonomiki, 2018, no. 4, pp. 76–94. (In Russ.). https://doi.org/10.32609/0042-8736-2018-4-76-94

Методика измерения массовой концентрации сажи в промышленных выбросах и в воздухе рабочей зоны: утв. ОАО НИИ «Техуглерод». Ярославль, 2005. 10 с. Measurement Procedure of the Mass Concentration of Soot in Industrial Emissions and in the Air of the Working Area: Approved by OAO Scientific Research Institute “Tekhuglerod”. Yaroslavl, 2005. 10 p. (In Russ.).

Мохирев А.П., Безруких Ю.А., Медведев С.О. Переработка древесных отходов предприятий лесопромышленного комплекса, как фактор устойчивого природопользования // Инж. вестн. Дона. 2015. № 2, ч. 2. С. 81. Mokhirev A.P., Bezrukikh J.A., Medvedev S.O. Recycling of Wood Wastes of Timber Industry, as a Factor of Sustainable Resource Management. Engineering Journal of Don, 2015, no. 2, part 2, art. 81. (In Russ.).

Патент 2756712 С1 РФ. МПК F23B 10/00. Комбинированное топочное устройство для сжигания кородревесного топлива: № 2021106499: заявл. 12.03.2021: опубл. 04.10.2021 / В.К. Любов. Liubov V.K. Combined Bark-Wood Firing Device. Patent RF, no. RU 2 756 712 C1, 2021. (In Russ.).

Сафонов Г.В., Стеценко А.В., Дорина А.Л., Авалиани С.Л., Сафонова Ю.А., Беседовская Д.С. Стратегия низкоуглеродного развития России. Возможности и выгоды замещения ископаемого топлива «зелеными» источниками энергии. М.: ТЕИС, 2016. 48 с. Safonov G.V., Stetsenko A.V., Dorina A.L., Avaliani S.L., Safonova Yu.L., Besedovskaya D.S. The Strategy of Low-Carbon Development of Russia. Opportunities and Benefits of Substitution of Fossil Fuels with Green Energy Sources. Moscow, TEIS Publ., 2016. 48 p. (In Russ.). http://dx.doi.org/10.13140/RG.2.1.2954.5200

Сборник методик по определению концентраций загрязняющих веществ в промышленных выбросах. Л.: Гидрометеоиздат, 1987. 272 с. Collected Procedures for Determining the Concentrations of Pollutants in Industrial Emissions. Leningrad, Gidrometeoizdat Publ., 1987. 272 p. (In Russ.).

Тепловой расчет котлов (нормативный метод) / РАО «ЕЭС России», ВТИ, НПО ЦКТИ. СПб., 1998. 257 с. Thermal Calculation of Boilers (Standard Method). Saint Petersburg, 1998. 257 p. (In Russ.).

Трембовля В.И., Фингер Е.Д., Авдеева А.А. Теплотехнические испытания котельных установок. 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1991. 414 с. Trembovlya V.I., Finger E.D., Avdeeva A.A. Heating Tests of Boilers. Moscow, Energoatomizdat Publ., 1991. 414 p. (In Russ.).

Финкер Ф.З., Дульнева Л.Т., Кубышкин И.Б., Митрюхин А.Г., Дробышевский М.А. Результаты модернизации котла ПК-38 Назаровской ГРЭС с использованием ВИР-технологии «Политехэнерго» // Проблемы экономии топливно-энергетических ресурсов на промпредприятиях и ТЭС: межвуз. сб. науч. тр. СПб.: СПбГТУРП, 2005. С. 141–146. Finker F.Z., Dul’neva L.T., Kubyshkin I.B., Mitryukhin A.G., Drobyshevskiy M.A. Results of Modernization of the Boiler PK-38 of the Nazarovo Power Station Using the Technology of Secondary Use of Roofing Felt “Politekhenergo”. Issues of Saving the Fuel and Energy Resources at the Industrial Enterprises and Thermal Power Stations: Collection of Academic Papers. Saint Petersburg, SPb STUPP Publ., 2005, pp. 141–146. (In Russ.).

Финкер Ф.З., Кубышкин И.Б., Митрюхин А.Г., Шлегель А.Э., Сидоров Н.В., Царев С.А. Камерное сжигание дробленых назаровских углей на котле ПК-38 по схеме «Политехэнерго» // Новое в российской электроэнергетике. 2005. № 5. С. 34–41. Finker F.Z., Kubyshkin I.B., Mitryukhin A.G., Shlegel’ A.E., Sidorov N.V., Tsarev S.A. Chamber Combustion of Crushed Nazarovo Coals in a PK-38 Boiler According to the “Politekhenergo” Scheme. Novoye v rossiyskoy elektroenergetike, 2005, no. 5, pp. 34–41. (In Russ.).

Arshadi M., Gref R., Geladi P., Dahlqvist S.-A., Lestander T. The Influence of Raw Material Characteristics on the Industrial Pelletizing Process and Pellet Quality. Fuel Processing Technology, 2008, vol. 89, iss. 12, pp. 1442–1447. https://doi.org/10.1016/j.fuproc.2008.07.001

Bergman P. Torrefaction for Biomass Co-Firing in Existing Coal-Fired Power Stations BIOCOAL. ECN Report No. ECNC-05-013. Netherlands, 2005. 75 p.

Flach B., Bendz K., Krautgartner R., Lieberz S. EU-27. Biofuels Annual. GAIN Report No. NL3034. The Hague, USDA, 2013. 34 p.

Gera D., Mathur M.P., Freeman M.C., Robinson A. Effect of Large Aspect Ratio of Biomass Particles on Carbon Burnout in a Utility Boiler. Energy & Fuels, 2002, vol. 16, iss. 6, pp. 1523–1532. https://doi.org/10.1021/ef0200931

Kruggel-Emden H., Wirtz S., Scherer V. An Experimental Investigation of Mixing of Wood Pellets on a Forward Acting Grate in Discontinuous Operation. Powder Technology, 2013, vol. 233, pp. 261–277. https://doi.org/10.1016/j.powtec.2012.08.029

Lyubov V.K., Popov A.N., Maryandyshev P.A. Research of Efficient Burning of Bark and Wood Fuel. International Science and Technology Conference “EastConf”. Vladivistok, 2019, pp. 1–5. https://doi.org/10.1109/EastConf.2019.8725391

Magdziarz A., Wilk M., Straka R. Combustion Process of Torrefied Wood Biomass. Journal of Thermal Analysis and Calorimetry, 2017, vol. 127, pp. 1339–1349. https://doi.org/10.1007/s10973-016-5731-0

Maryandyshev P.А, Chernov A.А., Popova E.I., Lyubov V.K. Thermal Decomposition and Combustion of Coals, Fuel Wood, and Hydrolytic Lignin, as Studied by Thermal Analysis. Solid Fuel Chemistry, 2016, vol. 50, iss. 3, pp. 167–176. https://doi.org/10.3103/S0361521916030095

Poletto M., Zattera A.J., Forte M.M.C., Santana R.M.C. Thermal Decomposition of Wood: Influence of Wood Components and Cellulose Crystallite Size. Bioresource Technology, 2012, vol. 109, pp. 148–153. https://doi.org/10.1016/j.biortech.2011.11.122

Porfiriev B.N., Roginko S.A. Energy on Renewable Sources: Prospects for the World and for Russia. Herald of the Russian Academy of Sciences, 2016, vol. 86, iss. 6, pp. 433–440. https://doi.org/10.1134/S101933161606006X

Published

2023-02-17

How to Cite

Lyubov В., and Tsypnyatov И. “Improving the Efficiency of Energy Use of Biofuels”. Lesnoy Zhurnal (Forestry Journal), no. 1, Feb. 2023, pp. 172-85, doi:10.37482/0536-1036-2023-1-172-185.

Issue

Section

MECHANICAL TECHNOLOGY OF WOOD AND WOOD SCIENCE