Recovery and Purification of Gas Emissions from Pulp Production

Authors

DOI:

https://doi.org/10.37482/0536-1036-2024-1-182-194

Keywords:

melt, solution, weak white liquor, dust, hydrogen sulfide, regeneration, recuperation, condensate, purification, air, vapour

Abstract

For pulp production, large-scale enterprises have been built which, while in operation, are subject to new requirements, different from the design ones, for economic efficiency, labour safety, as well as impact on the local population and the environment. Significant success in this work has been achieved by changing the liquor recovery technology, switching to burning black liquor of increased concentration, which makes it possible to almost completely eliminate the largest source of hydrogen sulfide and methyl mercaptan emissions with flue gases, reduce sulfur losses and improve energy efficiency of soda recovery boilers. Another significant source of soda recovery boiler emissions is a smelt dissolving tank vent. An important technological operation of dissolving molten sodium salts with weak white liquor supplied from the causticization shop takes place in the tank. The modern development of smelt leaching technology is related to the improvement of equipment compatible with the technology of regeneration of chemical reagents for pulp production. Heat exchangers and gas purifiers of “gas-liquid” systems, easier to adapt to technological requirements compared to other systems, are installed on the dissolving tank vent. The installation of such equipment provides the change in the smelt leaching technology, and affects the technology of causticization and lime recovery. This article covers the research of the relationship between the technical solutions ensuring the safety of personnel in the boiler shop, heat and chemicals recovery, as well as purification of gas emissions and the changes in the technology of smelt leaching in the soda recovery boiler of the pulp mill. On the basis of experimental data and a mathematical model of the movement of the vapour-gas mixture in the smelt dissolving tank vent, the technological feasibility of installing heat exchangers at different heights of the vent and the possibility of effective purification of gas emissions using a direct-flow sprayer have been considered. The applicability of the irrigation of the steam-gas flow with weak white liquor, which is formed during the cycle of chemical regeneration in pulp production, as well as the conditions for ensuring reliable operation of gas purification equipment, have been investigated. The quantitative characteristics of the necessary change in consumption and composition of weak white liquor and the methods of its supply to the dissolving tank have been obtained.

Downloads

Download data is not yet available.

Author Biographies

Sergey V. Aniskin, Saint-Petersburg State University of Industrial Technologies and Design

Doctor of Engineering, Prof.

Victor S. Kurov, Saint-Petersburg State University of Industrial Technologies and Design

Doctor of Engineering, Prof.; ResearcherID: V-7289-2017

References

Анискин С.В., Куров В.С. Разработка прямоточных распылительных аппаратов повышенной надежности, совместимых с технологией целлюлозно-бумажного производства // Вестн. СПГУТД. Сер. 4: Промышл. технологии. 2022. № 1. C. 90–94. Aniskin S.V., Kurov V.S. Development of High–Reliability Direct-Flow Spray Devices Compatible with Pulp and Paper Production Technology. Vestnik of St. Petersburg State University of Technology and Design. Series 4: Industrial Technologies, 2022, no. 1, pp. 90–94. (In Russ.). https://doi.org/10.46418/2619-0729_2022_1_13

Баркалов Б.В., Павлов Н.Н., Амирджанов С.С., Гримитлин М.И., Моор Л.Ф., Позин Г.М., Креймер Б.Н., Рубчинский В.М., Садовская Т.И., Березина Н.И., Бычкова Л.А., Ушомирская А.И., Финкельнтейн С.М., Пирумов А.И. Внутренние санитарно-технические устройства. Справочник проектировщика: в 3 ч. Ч. 3. Вентиляция и кондиционирование воздуха. Кн. 2 / под ред. Н.Н. Павлова, Ю.И. Шиллера. 4-е изд., перераб. и доп. М.: Стройиздат, 1992. 416 с. Barkalov B.V., Pavlov N.N., Amirdzhanov S.S., Grimitlin M.I., Moor L.F., Pozin G.M., Kreymer B.N., Rubchinskiy V.M., Sadovskaya T.I., Berezina N.I., Bychkova L.A., Ushomirskaya A.I., Finkel’ntein S.M., Pirumov A.I. Internal Sanitary Equipment: in 3 Parts. Part 3.Ventilation and Air Conditioning. Book 2. Edited by N.N. Pavlov and Yu.I. Shiller. 4th ed., revised and enlarged. Moscow, Stroyizdat Publ., 1992. 416 p. (In Russ.).

Иванов А.Н., Белоусов В.Н., Смородин С.Н. Теплообменное оборудование предприятий. СПб., 2016. 184 с. Ivanov A.N., Belousov V.N., Smorodin S.N. Heat Exchange Equipment for Industrial Enterprises. St. Petersburg, 2016. 184 p. (In Russ.).

Кочев А.Г., Сергиенко А.С. Аэродинамический расчет механических и гравитационных систем вентиляции. Н. Новгород: ННГАСУ, Деловая Полиграфия, 2015. 25 с. Kochev A.G., Sergienko A.S. Aerodynamic Calculation of Mechanical and Gravitational Ventilation Systems. Nizhny Novgorod, Nizhny Novgorod State University of Architecture and Civil Engineering, Delovaya Poligraphiya Publ., 2015. 25 p. (In Russ.).

Непенин Ю.Н. Технология целлюлозы: в 3 т. Т. II. Производство сульфатной целлюлозы. М.: Лесн. пром-сть, 1990. 600 с. Nepenin Yu.N. Cellulose Technology: in 3 vol. Vol. II: Production of Sulphate Cellulose. Moscow, Lesnaya promyshlennost’ Publ., 1990. 600 p. (In Russ.).

Пасечник С.П., Торф А.И. Газоочистные установки растворителей плава содорегенерационных котлоагрегатов. М.: ВНИПИЭИлеспром, 1977. 30 с. Pasechnik S.P., Torf A.I. Gas Cleaning Units for Smelt Dissolving Tanks in Soda Recovery Boilers. Moscow, VNIPIEIlesprom Publ., 1977. 30 p. (In Russ.).

Патент № 2043444 РФ, МПК D21C 11/06. Устройство для регенерации тепла и химикатов из парогазовых выбросов растворителя плава содорегенерационного котлоагрегата: № 5056154/12: заявл. 29.07.1992: опубл. 10.09.1995 / Л.В. Романова, Е.А. Стасюк, В.Г. Родионов, И.И. Гогонин. Romanova L.V., Stasyuk E.A., Rodionov V.G., Gogonin I.I. A Device for the Regeneration of Heat and Chemicals from Steam-Gas Emissions of a Smelt Dissolving Tank in a Soda Recovery Boiler. Patent RF, no. RU 2043444 BI, 1995. (In Russ.).

Сиваков В.П., Вураско А.В., Музыкантова В.И. Регенерация химикатов и тепла в содорегенерационных котлоагрегатах. Устройство и диагностирование. Екатеринбург: УГЛТУ, 2015. 141 с. Sivakov V.P., Vurasko A.V., Muzykantova V.I. Regeneration of Chemicals and Heat in Soda Recovery Boilers. Device and Diagnostics. Yekaterinburg, Ural State Forestry University, 2015. 141 p. (In Russ.).

Смородин С.Н., Иванов А.Н., Белоусов В.Н. Содорегенерационные котлоагрегаты. СПб., 2010. 164 с. Smorodin S.N., Ivanov A.N., Belousov V.N. Soda Recovery Boilers. St. Petersburg, 2010. 164 p. (In Russ.).

Технология целлюлозно-бумажного производства: в 3 т. Т. 1. Сырье и производство полуфабрикатов. Ч. 2. Производство полуфабрикатов. СПб.: Политехника, 2003. 663 с. Technology of Pulp and Paper Production. In 3 volumes. Volume 1. Production of Semi-Finished Products. Part 2. Production of Semi-Finished Products. St. Petersburg, Politekhnika Publ., 2003. 663 p. (In Russ.).

Ahtila P., Ruohola T., Tamminen A. Method and Apparatus for Preparing Green Liquor. Patent no. Europäisches patentament EP 1 193 341 B1. 2005.

Das S.K., Biswas M.N. Studies on Ejector-Venturi Fume Scrubber. Chemical Engineering Journal, 2006, vol. 119, iss. 2–3, pp. 153–160. https://doi.org/10.1016/j.cej.2006.03.019

Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Official Journal of the European Union, L 152, 11.06.2008, pp.1–44.

Gamisans X., Sarra M., Lafuente F.J., Azzopardi B.J. The Hydrodynamics of Ejector-Venturi Scrubbers and Their Modelling by an Annular Flow/Boundary Layer Model. Chemical Engineering Science, 2002, vol. 57, iss. 14, pp. 2707–2718. https://doi.org/10.1016/S0009-2509(02)00171-9

Harry-Ngei N., Ubong I., Ede P.N. A Review of the Scrubber as a Tool for the Control of Flue Gas Emissions in a Combustion System. European Journal of Engineering and Technology Research, 2019, vol. 4, iss. 11, рр. 1–4. https://doi.org/10.24018/ejeng.2019.4.11.1561

Poling B.E., Prausnitz J.M., O’Connell J.P. The Properties of Gases and Liquids. New York, McGRAW-HILL, 2001. 803 p.

Sittig M. Pulp and Paper Manufacture: Energy Conservation and Pollution Prevention (Pollution Technology Preview). Park Ridge, NJ, Noyes Data Corp. / Noyes Publ., 1977. 430 p.

Smook G.A. Handbook for Pulp and Paper Technologists. TAPPI Press, 2016. 438 p.

Published

2024-03-03

How to Cite

Aniskin С. ., and Kurov В. . “Recovery and Purification of Gas Emissions from Pulp Production”. Lesnoy Zhurnal (Forestry Journal), no. 1, Mar. 2024, pp. 182-94, doi:10.37482/0536-1036-2024-1-182-194.

Issue

Section

TECHNOLOGY OF WOOD CHEMICAL PROCESSING AND PRODUCTION OF WOOD-POLYMER COMPOSITES