Optimization of the Design Parameters of the Regenerative Rod of a Logging Road Train

Authors

DOI:

https://doi.org/10.37482/0536-1036-2024-2-128-141

Keywords:

logging truck, double-acting hydraulic cylinder, trailer, energy recovery, self-pulling function, optimization of parameters, computer experiment, optimization cartogram, pneumohydraulic accumulator, logging road, system efficiency

Abstract

The main advantages and peculiarities of the interaction of the links of a logging road train when moving during wood hauling along under-equipped logging roads are considered. Based on the analysis of the results of the research carried out by Russian and foreign authors, promising ways to improve the efficiency of logging trucks with trailers have been identified. The main disadvantages of the existing designs of the devices for coupling logging trucks with trailers have been presented. An improved design of the regenerative pneumohydraulic rod of the coupler of a road train has been proposed, which ensures a reduction in the maximum efforts during the dynamic interaction of the links, an increase in the road train reliability, the possibility of the power fluid energy recovery with its subsequent beneficial use, as well as the effect of self-pulling of the road train, improving its cross-country ability in the conditions of under-equipped logging roads. It has been revealed that the optimal internal diameter of 2 double-acting hydraulic cylinders connected in series with the free ends is within the range of 95 to 105 mm. With such a diameter, the recovered power reaches 4 kW, the average longitudinal acceleration of the trailer is in the range of 0.75 to 0.83 m/s2. The movement of a logging road train in the studied conditions at a speed of 20 to 60 km/h is accompanied by a change in the average recovered power from 1.8 to 11.3 kW and the average longitudinal acceleration of the trailer – from 0.2 to 1.4 m/s2. It has been determined that at average heights of support surface irregularities of 0.1 to 0.2 m, characteristic of typical under-equipped logging roads, the average recovered power is in the range of 2.2 to 4.1 kW and the average longitudinal acceleration of the trailer is in the range of 0.26 to 0.53 m/s2. The optimal stroke of the regenerative pneumohydraulic rod of the coupler of a road train is 0.55 m, the optimal rate of lengthening (or shortening) of the rod is 0.28 m/s. This ensures the average self-pulling speed of 0.22 m/s, the mean displacement of a logging road train of 0.11 m per one cycle of lengthening (or shortening) of the rod and the power recovered by the rod of 1.75 kW.

Downloads

Download data is not yet available.

Author Biographies

Vadim O. Nikonov, Voronezh State University of Forestry and Technologies named after G.F. Morozov

Candidate of Engineering, Assoc. Prof.; ResearcherID: N-3510-2019

Valeryi I. Posmetyev, Voronezh State University of Forestry and Technologies named after G.F. Morozov

Doctor of Engineering, Prof.; ResearcherID: Q-1411-2015

Andrey Yu. Manukovskii, Voronezh State University of Forestry and Technologies named after G.F. Morozov

Doctor of Engineering, Prof.; ResearcherID: AAR-1976-2020

Viktor V. Posmetyev, Voronezh State University of Forestry and Technologies named after G.F. Morozov

Candidate of Physics and Mathematics, Assoc. Prof.; ResearcherID: Z-3736-2019

Igor V. Sizmin, Voronezh State University of Forestry and Technologies named after G.F. Morozov

Postgraduate Student; ResearcherID: IWE-3107-2023

References

Адлер Ю.П., Маркова Е.В., Грановский Ю.В. Планирование эксперимента при поиске оптимальных условий. М.: Наука, 1976. 279 с. Adler Yu.P., Markova E.V., Granovskiy Yu.V. Planning an Experiment in the Search for Optimal Conditions. Moscow, Nauka Publ., 1976. 279 p. (In Russ.).

Грановский В.А., Сирая Т.Н. Методы обработки экспериментальных данных при измерениях. Л.: Энергоатомиздат. Ленингр. отд-ние, 1990. 288 с. Granovskiy V.A., Siraya T.N. Methods of Processing Experimental Data in Measurements. Leningrad, Energoatomizdat Publ., 1990. 288 p. (In Russ.).

Мудров А.Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. Томск: Раско, 1991. 272 с. Mudrov A.E. Numerical Methods for PC in Terms of Basic, Fortran and Pascal. Tomsk, MP “RASKO” Publ., 1991. 272 p. (In Russ.).

Никонов В.О. Современное состояние, проблемы и пути повышения эффективности лесовозного автомобильного транспорта. Воронеж: ВГЛТУ, 2021. 203 с. Nikonov V.O. Current State, Problems and Ways to Improve the Efficiency of Timber Road Transport. Voronezh, VSUFT Publ., 2021. 203 p. (In Russ.).

Патент № 2784227 C1 РФ, МПК B60D 1/14, B60D 1/145, B60D 1/155. Рекуперативное пневмогидравлическое дышло сцепного устройства автопоезда с функцией самовытаскивания: № 2022124514: заявл. 16.09.2022: опубл. 23.11.2022 / В.И. Посметьев, В.О. Никонов, В.В. Посметьев, И.В. Сизьмин. Posmetev V.I., Nikonov V.O., Posmetev V.V., Sizmin I.V. Regenerative Pneumohydrolic Rod of the Coupler of A Road Train with Self-Pulling Function. Patent RF, no. RU 2784227 С1, 2022. (In Russ.).

Посметьев В.И., Никонов В.О., Посметьев В.В., Сизьмин И.В. Имитационная модель оценки эффективности лесовозного автопоезда, оснащенного рекуперативным пневмогидравлическим тягово-сцепным устройством // Лесотехн. журн. 2020. Т. 10, № 4(40). С. 181–196. Posmetyev V.I., Nikonov V.O., Posmetyev V.V., Sizmin I.V. Simulation Model for Estimation of Forest Truck Performance Equipped with Recuperative Spring-Hydraulic FifthWheel Coupling. Lesotekhnicheskiy Zhurnal = Forestry Engineering Journal, 2020, vol. 10, no. 4(40), pp. 181–196. (In Russ.). https://doi.org/10.34220/issn.2222-7962/2020.4/15

Посметьев В.И., Никонов В.О., Сизьмин И.В. Повышение эффективности лесовозного автопоезда путем использования рекуперативного пневмогидравлического сцепного устройства // Воронеж. науч.-техн. вестн. 2022. Т. 4, № 4(38). C. 70–85. Posmetev V.I., Nikonov V.O., Siz’min I.V. Improving the Efficiency of the Forest Trading by Using a Recuperative Pneumatic Hydraulic Coupling Device. Voronezhskij nauchno-tehnicheskij vestnik = Voronezh Scientific-Technical Bulletin, 2022, vol. 4, no. 4(38), pp. 70–85. (In Russ.). https://doi.org/10.34220/2311-8873-2022-70-85

Alrejjal A., Ksaibati K. Impact of Crosswinds and Truck Weight on Rollover Propensity when Negotiating Combined Curves. International Journal of Transportation Science and Technology, 2022, vol. 12, iss. 1, pp. 86–102. http://doi.org/10.1016/j.ijtst.2022.01.001

Bako S., Ige B., Nasir A., Musa N.A. Stability Analysis of a Semi-Trailer Articulated Vehicle: A Review. International Journal of Automotive Science and Technology, 2021, vol. 5, iss. 2, pp. 131–140. http://doi.org/10.30939/ijastech..855733

Brown M.W. Evaluation of the Impact of Timber Truck Configuration and Tare Weight on Payload Efficiency: An Australian Case Study. Forests, 2021, vol. 12, no. 7, art. no. 855. http://doi.org/10.3390/f12070855

Ghaffariyan M.R., Barrier C., Brown M.W., Kuehmaier M., Acuna M. A Short Review of Timber Truck Fuel Consumption Studies. Australian Forests Operations Research Alliance (AFORA) Industry Bulletin, 2018, vol. 21.

Johannes E., Ekman P., Huge-Brodin M., Karlsson M. Sustainable Timber Transport – Economic Aspects of Aerodynamic Reconfiguration. Sustainability, 2018, vol. 10, no. 6, art. no. 1965. http://doi.org/10.3390/su10061965

Kogler C., Stenitzer A., Rauch P. Simulating Combined Self-Loading Truck and Semitrailer Truck Transport in the Wood Supply Chain. Forests, 2020, vol. 11, no. 12, art. no. 1245. http://doi.org/10.3390/f11121245

Korpinen O.-J., Aalto M., Venäläinen P., Ranta T. Impacts of a High-Capacity Truck Transportation System on the Economy and Traffic Intensity of Pulpwood Supply in Southeast Finland. Croatian Journal of Forest Engineering, 2019, vol. 40, iss. 1, pp. 89–105.

Lachini E., Fiedler N., Silva G., Pinheiro C., Carmo F. Operational Analysis of Forestry Transportation Using Self-Loading Trucks in a Mountainous Region. Floresta e Ambiente, 2018, vol. 25, iss. 4, art. no. e20150060. http://doi.org/10.1590/2179-8087.006015

Mitrofanovs I., Cekule M. Effective Collaboration Research Project on IT Solution for Automatic Measurement of Timber Assortment. Systemics, Cybernetics and Informatics, 2019, vol. 17, no. 2, pp. 78–83.

Monti C.A.U., Gomide L.R., Oliveira R.M., Franca L.C.J. Optimization of Wood Supply: The Forestry Routing Optimization Model. Anais da Academia Brasileira de Ciências, 2020, vol. 92, iss. 3, art. no. e20200263. http://doi.org/10.1590/0001-3765202020200263

Moreno G., Manenti V., Guerero G., Nicolazzi L., Vieira R., Martins D. Stability of Heavy Articulated Vehicles: Effect of Load Distribution. Transportation Research Procedia, 2018, vol. 33, pp. 211–218. http://doi.org/10.1016/j.trpro.2018.10.094

Schettino S., Minette L.J., Schettino C.F., Reboleto I.D. Feasibility Analysis of the Use of Light and Medium Trucks in Timber Transport in Rural Properties. Revista Árvore, 2018, vol. 42, iss. 6, art. no. e420608. https://doi.org/10.1590/1806-90882018000600008

Trzciński G., Moskalik T., Wojtan R. Total Weight and Axle Loads of Truck Units in the Transport of Timber Depending on the Timber Cargo. Forests, 2018, vol. 9, no. 4, art. no. 164. http://doi.org/10.3390/f9040164

Published

2024-04-15

How to Cite

Nikonov В., Posmetyev В., Manukovskii А., Posmetyev В., and Sizmin И. “Optimization of the Design Parameters of the Regenerative Rod of a Logging Road Train”. Lesnoy Zhurnal (Forestry Journal), no. 2, Apr. 2024, pp. 128-41, doi:10.37482/0536-1036-2024-2-128-141.