The Effect of the Knife Tacking Type on the Process of Producing Microcrystalline Cellulose

Authors

DOI:

https://doi.org/10.37482/0536-1036-2024-2-152-165

Keywords:

grinding of fibrous materials, microcrystalline cellulose, tacking, hydrolysis, fibrillation, disc mill, destruction, degree of polymerization

Abstract

The article shows the possibility of intensifying the process of producing microcrystalline cellulose via pregrinding of fibrous semi-finished products before hydrolysis. The technological factors determining the grinding of fibrous materials have been considered. The efficiency of the microcrystalline cellulose production process is influenced by the choice of its production technology. For grinding, a semi-industrial disc mill with a tacking with rectilinear and curvilinear knives has been used. Multiphysics models of the flow of fibrous mass in the grinding zone of a disc mill with different knife tacking patterns have been constructed. The morphological properties of the fiber have been measured on the Morfi Neo automatic fiber analyzer after grinding to 65 °SR. The nature of the change in the properties of bleached sulfate hardwood and softwood cellulose has been analyzed. It has been found that it is identical for all degrees of grinding, but the quantitative characteristics change to the greatest extent when grinding softwood cellulose using a tacking with rectilinear knives: the weighted average length of fibers decreases by 17 %, the width – by 14 %; the content of broken fibers increases by 22 %, the content of fines along the length – by 67 % and the fibrillation index – by 1.9 times. A comparative analysis of the values of the degree of polymerization depending on the knife tacking pattern has been carried out. The conditions for producing microcrystalline cellulose after grinding the fibrous mass in a semi-industrial disc mill, depending on the degree of grinding, have been determined. It has been shown that with an increase in the degree of grinding of the fibrous mass from 15 to 65 °SR, the degree of polymerization of microcrystalline cellulose decreases from 272 to 120, the concentration of hydrochloric acid – from 2.5 to 1.5 N and the duration of hydrolysis – from 120 to 90 min. The developed method for producing microcrystalline cellulose makes it possible to reduce the cost of chemical treatment of the fibrous mass (acid concentration, treatment duration and hydrolysis temperature) by 1.5 times.

Downloads

Download data is not yet available.

Author Biographies

Larisa V. Yurtayeva, Reshetnev Siberian State University of Science and Technology

Candidate of Engineering, Assoc. Prof.; ResearcherID: ITU-6565-2023

Yuriy D. Alashkevich, Reshetnev Siberian State University of Science and Technology

Doctor of Engineering, Prof.; ResearcherID: ITU-6674-2023

Elena A. Slizikova, Reshetnev Siberian State University of Science and Technology

Postgraduate Student; ResearcherID: ITU-6598-2023

Evgeniy V. Kaplyov, Reshetnev Siberian State University of Science and Technology

Postgraduate Student; ResearcherID: ITU-6526-2023

Snezhana A. Pozharkova, Reshetnev Siberian State University of Science and Technology

Junior Research Scientist; ResearcherID: IUQ-1617-2023

References

Алашкевич Ю.Д. Основы теории гидродинамической обработки волокнистых материалов в размольных машинах: дис. … д-ра техн. наук. Л., 1980. 334 с. Alashkevich Yu.D. Fundamentals of the Theory of Hydrodynamic Processing of Fibrous Materials in Grinding Machines: Doc. Techn. Sci. Diss. Leningrad, 1980. 334 p. (In Russ.).

Алашкевич Ю.Д., Решетова Н.С. Теория и проектирование машин и оборудования в промышленности. Ч. 1. Красноярск: СибГТУ, 2013. 197 с. Alashkevich Yu.D., Reshetova N.S. Theory and Design of Machinery and Equipment in the Industry. Part 1. Krasnoyarsk, SibSTU Publ., 2013. 197 p. (In Russ.).

Алашкевич Ю.Д., Решетова Н.С., Марченко Р.А. Теория и конструкция машин и оборудования отрасли: практикум / СибГУ им. М.Ф. Решетнева. Красноярск, 2020. 96 с. Alashkevich Yu.D., Reshetova N.S., Marchenko R.A. Theory and Design of Machinery and Equipment of the Branch: Practicum. Krasnoyarsk, Reshetnev Siberian State University of Science and Technology Publ., 2020. 96 p. (In Russ.).

Гаузе А.А., Гончаров В.Н. Машины для размола и сортирования бумажной массы: конспект лекций. Л., 1975. 115 с. Gause A.A., Goncharov V.N. Machines for Grinding and Sorting Paper Pulp: Lecture Notes. Leningrad, 1975. 115 p. (In Russ.).

Дятлов Е.С., Рублев А.И., Кондрашов А.И., Литвинов А.Б. Дисковые мельницы отечественного производства для целлюлозно-бумажной промышленности // Целлюлоз.-бум. машиностроение. 1974. № 1. С. 1–5. Dyatlov E.S., Rublev A.I., Kondrashov A.I., Litvinov A.B. Disc Mills of Domestic Production for Pulp and Paper Industry. Tsellyulozno-bumazhnoe mashinostroenie, 1974, no. 1, pp. 1–5. (In Russ.).

Иванов С.Н. Технология бумаги. 3-е изд. М.: Шк. бумаги, 2006. 696 с. Ivanov S.N. Paper Technology. 3rd ed. Moscow, Shkola Bumagi Publ., 2006. 696 p. (In Russ.).

Каплёв Е.В., Юртаева Л.В., Алашкевич Ю.Д., Таразеев Д.С. Исследование механических прочностных свойств целлюлозы, полученной из биоповрежденной древесины // Современные тенденции развития химической технологии, промышленной экологии и экологичческой безопасности: материалы III Всерос. науч.-практ. конф. с участием молодых ученых, Санкт-Петербург, 7–8 апр. 2022 г. СПб.: СПбГУПТД, 2022. С. 25–28. Kaplyov E.V., Yurtayeva L.V., Alashkevich Yu.D., Tarazeev D.S. Investigation of Mechanical Strength Properties of Cellulose Obtained from Bio-Damaged Wood. Modern Trends in the Development of Chemical Technology, Industrial Ecology and Environmental Safety: Materials of the 3rd All-Russian Scientific and Practical Conference with the Participation of Young Scientists (St. Petersburg, April 7–8, 2022). St. Petersburg, Saint Petersburg State University of Industrial Technologies and Design Publ., 2022, pp. 25–28. (In Russ.).

Легоцкий С.С., Гончаров В.Н. Размалывающее оборудование и подготовка бумажной массы. М.: Лесн. пром-сть, 1990. 222 с. Legotskiy S.S., Goncharov V.N. Grinding Equipment and Preparation of Paper Pulp. Moscow, Lesnaya promyshlennost’ Publ., 1990. 222 p. (In Russ.).

Легоцкий С.С., Лаптев Л.Н. Размол бумажной массы. М.: Лесн. пром-сть, 1981. 93 с. Legotskiy S.S., Laptev L.N. Paper Pulp Grinding. Moscow, Lesnaya promyshlennost’ Publ., 1981. 93 p. (In Russ.).

Оболенская А.В., Щеголев В.П., Аким Г.Л., Аким Э.Л., Коссович Н.Л., Емельянова И.З. Практические работы по химии древесины и целлюлозы. М.: Лесн. пром-сть, 1965. 411 с. Obolenskaya A.V., Shchegolev V.P., Akim G.L., Akim E.L., Kossovich N.L., Emelyanova I.Z. Practical Work on the Chemistry of Wood and Pulp. Moscow, Lesnaya promyshlennost’ Publ., 1965. 411 p. (In Russ.).

Патент 2147057 РФ, МПК D21C 9/00, C08B 1/02. Способ получения микрокристаллической целлюлозы: № 99117051: заявл. 04.08.1999: опубл. 27.03.2000 / А.П. Карманов, Л.С. Кочева, А.А. Киселева. Karmanov A.P., Kocheva L.S., Kiseleva A.A. Method for Producing Microcrystalline Cellulose. Patent RF, no. RU 2147057 С1, 2000. (In Russ.).

Патент 2155192 РФ, МПК C08B 15/02. Способ получения микрокристаллической целлюлозы: № 99116394: заявл. 04.08.1999: опубл. 27.08.2000 / А.В. Тихомиров, Р.А. Буланов. Tikhomirov A.V., Bulanov R.A. Method for Producing Microcrystalline Cellulose. Patent RF, no. RU 2155192 С1, 2000. (In Russ.).

Патент 2178033 РФ, МПК D21C 1/04, C08B 15/00. Способ получения микрокристаллической целлюлозы из соломы злаковых: № 2006126226: заявл. 19.07.2006: опубл. 10.12.2007 / Б.Н. Кузнецов, В.Г. Данилов, О.В. Яценкова, Е.Ф. Ибрагимова. Kuznetsov B.N., Danilov V.G., Yatsenkova O.V., Ibragimova E.F. Method for Producing Microcrystalline Cellulose from Cereal Straw. Patent RF, no. RU 2178033 С1, 2007. (In Russ.).

Патент 2307833 РФ, МПК D21D 1/30, B02C 7/12. Размалывающая гарнитура: № 2006110647: заявл. 03.04.2007: опубл. 10.10.2007 / Ю.Д. Алашкевич, В.И. Ковалев, В.Ф. Харин, А.П. Мухачев. Alashkevich Yu.D., Kovalev V.I., Kharin V.F., Mukhachev A.P. Tacking. Patent RF, no. RU 2307833 С1, 2007. (In Russ.).

Патент 2314381 РФ, МПК D21D 1/30, B02C 7/12. Размалывающая гарнитура для дисковой мельницы: № 2006121711: заявл. 19.06.2006: опубл. 10.01.2008 / Ю.Д. Алашкевич, В.И. Ковалев, А.А. Набиева. Alashkevich Yu.D., Kovalev V.I., Nabieva A.A. Tacking for a Disc Mill. Patent RF, no. RU 2314381 С1, 2008. (In Russ.).

Патент 2395636 РФ, МПК D21B 1/36, D21C 1/04, C08B 1/00, C08B 15/02. Способ получения микрокристаллической целлюлозы из автогидролизованной древесины: № 2009126875: заявл. 13.07.2009: опубл. 27.07.2010 / Б.Н. Кузнецов, В.Г. Данилов, О.В. Яценкова, Е.Ф. Ибрагимова. Kuznetsov B.N., Danilov V.G., Yatsenkova O.V., Ibragimova E.F. Method for Producing Microcrystalline Cellulose from Autohydrolyzed Wood. Patent RF, no. RU 2395636 С1, 2010. (In Russ.).

Патент 2797202 РФ, МПК D21С 1/04, C08B 15/00. Способ получения микрокристаллической целлюлозы: № 2022132617: заявл. 13.12.2022: опубл. 31.05.2023 / Ю.Д. Алашкевич, В.И. Ковалев, Л.В. Юртаева, Е.В. Каплёв, Р.А. Марченко. Alashkevich Yu.D., Kovalev V.I., Yurtayeva L.V., Kaplyov E.V., Marchenko R.A. Method for Producing Microcrystalline Cellulose. Patent RF, no. 2797202 C1, 2023. (In Russ.).

Симигин П.С. О размоле и размалывающем оборудовании // Бум. пром-сть. 1970. № 6. С. 15–17. Simigin P.S. On Grinding and Grinding Equipment. Bumazhnaya promyshlennost’, 1970, no. 6, pp. 15–17. (In Russ.).

Юртаева Л.В., Алашкевич Ю.Д. Способ получения микрокристаллической целлюлозы на основе биоповрежденной древесины // Хвойные бореал. зоны. 2022. Т. XL, № 2. С. 158–163. Yurtayeva L.V., Alashkevich Yu.D. A Method for Producing Microcrystalline Cellulose Based on Bio-Damaged Wood. Khvoinye boreal’noi zony = Conifers of the Boreal Area, 2022, vol. XL, no. 2, pp. 158–163. (In Russ.). https://doi.org/10.53374/1993-0135-2022-2-158-163

Юртаева Л.В., Алашкевич Ю.Д., Каплёв Е.В., Слизикова Е.А. Влияние размола однолетних растительных полимеров на процесс получения мелкодисперсной целлюлозы // Хвойные бореал. зоны. 2023. Т. XLI, № 4. С. 361–368. Yurtayeva L.V., Alashkevich Yu.D., Kaplev E.V., Slizikova E.A. The Effect of Grinding Annual Plant Polymers on the Process of Obtaining Fine Cellulose. Khvoinye boreal’noi zony = Conifers of the Boreal Area, 2023, vol. XLI, no. 4, pp. 361–368. (In Russ.). https://doi.org/10.53374/1993-0135-2023-4-361-368

García Hernández M.A., Marure A.L., Neira Velázquez M.G., Mariano Torres J.A., Galvan A.A. Microcrystalline Cellulose Isolation – Proposed Mechanism: Enhanced Coupling. BioResources, 2023, vol. 18, iss. 1, pp. 1788–1802. https://doi.org/10.15376/biores.18.1.1788-1802

Hermawan D., Lai T.K., Jafarzadeh S.J., Gopakumar D.A., Hasan M., Owolabi F.A.T., Sri Aprilia N.A., Rizal S., Abdul Khalil H.P.S. Development of SeaweedBased Bamboo Microcrystalline Cellulose Films Intended for Sustainable Food Packaging Applications. BioResources, 2019, vol. 14, iss. 2, pp. 3389–3410. https://doi.org/10.15376/biores.14.2.3389-3410

Hou W., Ling C., Shi S., Yan Z. Preparation and Characterization of Microcrystalline Cellulose from Waste Cotton Fabrics by Using Phosphotungstic Acid. International Journal of Biological Macromolecules, 2019, vol. 123, pp. 363–368. https://doi.org/10.1016/j.ijbiomac.2018.11.112

Ilyas R.A., Sapuan S.M., Ishak M.R., Zainudin E.S., Atikah M.S. Characterization of Sugar Palm Nanocellulose and its Potential for Reinforcement with a Starch-Based Composite. Sugar Palm Biofibers, Biopolymers, and Biocomposites. 1st ed. Boca Raton, CRC Press, 2018, chapt. 10. https://doi.org/10.1201/9780429443923-10

Kale R.D., Bansal P.S., Gorade V.G. Extraction of Microcrystalline Cellulose from Cotton Sliver and its Comparison with Commercial Microcrystalline Cellulose. Journal of Polymers and the Environment, 2018, vol. 26, pp. 355–364. https://doi.org/10.1007/S10924-017-0936-2

Kushnir E.Yu., Autlov S.A., Bazarnova N.G. Preparation of Microcrystalline Cellulose Directly from Wood under Microwave Radiation. Russian Journal of Bioorganic Chemistry, 2015, vol. 41, pp. 713–718. https://doi.org/10.1134/S1068162015070079

Li T., Chen C., Brozena A.H., Hu L., Zhu J.Y., Xu L., Driemeier C., Dai J., Rojas O.J., Isogai A., Wågberg L., Hu L. Developing Fibrillated Cellulose as a Sustainable Technological Material. Nature, 2021, vol. 590, pp. 47–56. https://doi.org/10.1038/s41586-020-03167-7

Microcrystalline Cellulose (MCC) Market by Source Type and Application: Global Opportunity Analysis and Industry Forecast 2018 – 2025. Portland, Allied Market Research, 2018. 212 p.

Queiroz A.L.P., Kerins B.M., Yadav J., Farag F., Faisal W., Crowley M.E., Lawrence S.E., Moynihan H.A., Healy A.-M., Vucen S., Crean A.M. Investigating Microcrystalline Cellulose Crystallinity using Raman Spectroscopy. Cellulose, 2021, vol. 28, pp. 8971–8985. https://doi.org/10.1007/s10570-021-04093-1

Tan W.Y., Gopinath S.C.B., Anbu P., Velusamy P., Gunny A.A.N., Chen Y., Subramaniam S. Generation of Microcrystalline Cellulose from Cotton Waste and its Properties. BioResources, 2023, vol. 18, iss. 3, pp. 4884–4896. https://doi.org/10.15376/ biores.18.3.4884-4896

Vasilyeva D.Yu., Yurtaeva L.V., Marchenko R.A., Kaplyov E.V., Zyryanov D.E., Reshetova N.S. Investigation of the Influence of the Pattern of a Disc Mill Set on the Process of Obtaining Powdered Pulp. Journal of Physics: Conference Series, 2021, Krasnoyarsk, vol. 2094, art. no. 042050. https://doi.org/10.1088/1742-6596/2094/4/042050

Published

2024-04-15

How to Cite

Yurtayeva Л., Alashkevich Ю., Slizikova Е., Kaplyov Е., and Pozharkova С. “The Effect of the Knife Tacking Type on the Process of Producing Microcrystalline Cellulose”. Lesnoy Zhurnal (Forestry Journal), no. 2, Apr. 2024, pp. 152-65, doi:10.37482/0536-1036-2024-2-152-165.

Issue

Section

TECHNOLOGY OF WOOD CHEMICAL PROCESSING AND PRODUCTION OF WOOD-POLYMER COMPOSITES