Thermal Decomposition of Pellets from a Mixture of Peat and Bark Waste
DOI:
https://doi.org/10.37482/0536-1036-2025-3-145-154Keywords:
peat fuel, bark waste, pellets, granulator, thermal analysis, thermograms, X-ray fluorescence analysis, lignin, cellulose, hemicelluloseAbstract
There are large peat deposits in the Arkhangelsk Region. According to the balance sheet data, there are 626 deposits, each of which has an area exceeding 10 ha. At the same time, the Arkhangelsk Region faces the problem of efficient energy utilization of secondary energy resources, such as wood waste and bark, generated at timber industry enterprises. Thermal analysis of pellets from a mixture of peat (80 %) and bark waste from pulp and paper production (20 %) has been performed on a synchronous thermal analyzer in an argon and air environment in the temperature range of 30–700 °С. Peat has been collected in the Mezensky District of the Arkhangelsk Region, and samples of bark waste have been collected from the bark feed line to the E-75-3.9-440 DFT and KM75-40M fluidized bed boiler units installed at TPP-3 of Arkhangelsk Pulp and Paper Mill. The pellets have been obtained in a pellet-press. The elemental composition of pellets has been studied using a spectrometer. The main ash- and slag-forming elements in the samples are silicon, aluminum, calcium and iron. The thermal analysis of pellets has been carried out on a synchronous thermal analyzer in an argon and air medium with a flow rate of 20 cm3/min. To observe the drying and thermal transformations of pellets, the curves of the decrease in mass and speed of this process in the studied samples of fuel pellets have been used. It has been shown that the release of volatile substances has occurred at temperatures from 170 to 430 °C. The resulting pellets are high-calorie and low-ash biofuel. The results of the research can be applied for theoretical substantiation of the production of fuels with high combustion heat and mechanical strength in order to increase the role of local biomass in the energy sector of the Arkhangelsk Region.
Downloads
References
Беликова С.С., Беликов А.В. Восток и Запад: глобальные вызовы на пути достижения углеродной нейтральности // Управление. 2022. Т. 10, No 2. С. 5–13. Belikova S.S., Belikov A.V. East and West: Global Challenges to Achieving Carbon Neutrality. Upravlenie = Management (Russia), 2022, vol. 10, no. 2, pp. 5–13. (In Russ.). https://doi.org/10.26425/2309-3633-2022-10-2-5-13
Бобылев С.Н., Барабошкина А.В., Джу Сюан. Приоритеты низкоуглеродного развития для Китая // Государственное управление. Электрон. вестн. 2020. No 82. С. 114–139. Bobylev S.N., Baraboshkina A.V., Zhu Xuan. Priorities of Low-Carbon Development for China. Gosudarstvennoe upravlenie. Elektronnyj vestnik = Public Administration. E-journal, 2020, no. 82, pp. 114–139. (In Russ.). https://doi.org/10.24411/20701381-2020-10095
Бояркина А.В. Экологическое направление во внешнеполитической стратегии КНР // Вестн. РУДН. Сер.: Международные отношения. 2021. Т. 21, No 2. С. 325–337. Boyarkina A.V. Ecological Dimension in China’s Foreign Policy Strategy. Vestnik Rossijskogo universiteta druzhby narodov. Seriya: Mezhdunarodnye otnosheniya = Vestnik RUDN. International Relations, 2021, vol. 21, no. 2, pp. 325–337. (In Russ.). https://doi.org/10.22363/2313-0660-2021-21-2-325-337
Бушуев В., Зайченко В., Чернявский А., Шевченко А. Энергетический переход: перспективы использования биомассы // Энергетическая политика. 2024. No 2 (193). С. 68–83. Bushuev V., Zaichenko V., Chernyavsky A., Shevchenko A. Energy Transition: Development Prospects. Energeticheskaya politika = Energy Policy, 2024, no. 2 (193), pp. 68–83. (In Russ.). https://doi.org/10.46920/2409-5516-2024-2193-68
Веселова Д.Н. Климатическая политика Российской Федерации: законодательные и институциональные аспекты // ДискурсПи. 2021. Т. 18, No 3. С. 96–111. Veselova D.N. Climate Policy of the Russian Federation: Legislative and Institutional Aspects. DiskursPi = Discource P, 2021, vol. 18, no. 3, pp. 96–111. (In Russ.). https://doi.org/10.17506/18179568_2021_18_3_96
Галимзянова А.К. Климатическая дипломатия Китая и Германии // Восточный альманах: сб. науч. ст. Вып. V. М.: Квант Медиа, 2021. С. 14–29. Galimzyanova A.K. Climate Diplomacy of China and Germany.Vostochnyj al’manakh: Collection of Scientific Articles, iss. V. Moscow, Kvant Media Ltd., 2021, pp. 14–29. (In Russ.).
Дубоделова Е.В., Сычева Н.А., Хмызов И.А., Снопкова Т.А., Соловьева Т.В. Особенности технологии топливных пеллет из древесины лиственных пород // Тр. БГТУ. Химия, технология органических веществ и биотехнология. 2012. No 4. С. 166–168. Dubodelova E.V., Sycheva N.A., Khmyzov I.A., Snopkova T.A., Solov’eva T.V. Features of the Technology of Fuel Pellets from Hardwood. Trudy BGTU. Khimiya, tekhnologiya organicheskikh veshchestv i biotekhnologiya = Proceedings of BSTU. Chemistry, Organic Substances Technology and Biotechnology, 2012, no. 4, pp. 166–168. (In Russ.).
Зотова Е.В., Сафонов А.О., Платонов А.Д. Аналитическое исследование параметров, определяющих технологию производства древесных пеллет // Лесотехн. журн. 2014. No 1 (13). С. 127–132. Zotova E.V., Safonov A.O., Platonov A.D. Analytical Study of the Parameters Determining the Technology of Wood Pellet Production. Lesotekhnicheskij zhurnal = Forestry Engineering Journal, 2014, no. 1 (13), pp. 127–132. (In Russ.). https://doi.org/10.12737/3355
Кавешников Н.Ю. Стратегия ЕС в области климата и энергетики // Современная Европа. 2015. No 1 (61). С. 93–103. Kaveshnikov N.Y. European Union’s Climate and Energy Strategy. Sovremennaya Evropa = Contemporary Europe, 2015, no. 1 (61), pp. 93–103. (In Russ.). http://dx.doi.org/10.15211/soveurope1201593103
Ковалев Ю.Ю., Поршнева О.С. Страны БРИКС в международной климатической политике // Вестн. Рос. ун-та дружбы народов. 2021. Т. 21, No 1. С. 64–78. Kovalev Yu.Yu., Porshneva O.S. BRICS Countries in International Climate Policy. Vestnik Rossijskogo universiteta druzhby narodov. Seriya: Mezhdunarodnye otnosheniya = Vestnik RUDN. International Relations, 2021, vol. 21, no. 1, pp. 64–78. (In Russ.). https://doi.org/10.22363/2313-0660-2021-21-1-64-78
Рябов Г.А., Литун Д.С. Агломерация при сжигании и газификации топлив в кипящем слое // Теплоэнергетика. 2019. No 9. С. 42–59. Ryabov G.A., Litun D.S. Agglomeration during Сombustion and Gasification of Fuels in a Fluidized Bed. Teploenergetika, 2019, no. 9, pp. 42–59. (In Russ.). https://doi.org/10.1134/S0040363621010173
Сычева Н.А., Хмызов И.А., Соловьева Т.В. Влияние режима гранулирования и состава топливных пеллет на их прочностные свойства // Лесн. вестн. / Forestry bulletin. 2016. No 20 (3). С. 72–79. Sychova N.A., Hmyzov I.A., Soloueva T.V. The Influence of Granulation and Pellets Composition on Their Strength Properties. Lesnoy vestnik = Forestry Bulletin, 2016, vol. 20, no. 3, pp. 72–79. (In Russ.).
Aniza R., Chen W.-H., Kwon E.E., Bach Q.-V., Hoang A.T. Lignocellulosic Biofuel Properties and Reactivity Analyzed by Thermogravimetric Analysis (TGA) toward Zero Carbon Scheme: A Critical Review. Energy Conversion and Management: X, 2024, vol. 22, art. no. 100538. https://doi.org/https://doi.org/10.1016/j.ecmx.2024.100538
Balogun A.O., Adeleke A.A., Ikubanni P.P., Adegoke S.O., Alayat A.M., McDonald A.G. Physico-Chemical Characterization, Thermal Decomposition and Kinetic Modeling of Digitaria sanguinalis under Nitrogen and Air Environments. Case Studies in Thermal Engineering, 2021, vol. 26, art. no. 101138. https://doi.org/10.1016/j.csite.2021.101138
Escalante J., Chen W.-H., Tabatabaei M., Hoang A.T., Kwon E.E., Andrew Lin K.-Y., Saravanakumar A. Pyrolysis of Lignocellulosic, Algal, Plastic, and Other Biomass Wastes for Biofuel Production and Circular Bioeconomy: A Review of Thermogravimetric Analysis (TGA) Approach. Renewable and Sustainable Energy Reviews, 2022, vol. 169, art. no. 112914. https://doi.org/10.1016/j.rser.2022.112914
Gilvari H., de Jong W., Schott D.L. Quality Parameters Relevant for Densification of Bio-Materials: Measuring Methods and Affecting Factors – A Review. Biomass and Bioenergy, 2019, vol. 120, pp. 117–134. https://doi.org/10.1016/j.biombioe.2018.11.013
Kamga P.L.W., Vitoussia T., Bissoue A.N., Nguimbous E.N., Dieudjio D.N., Bot B.V., Njeugna E. Physical and Energetic Characteristics of Pellets Produced from Movingui Sawdust, Corn Spathes, and Coconut Shells. Energy Reports, 2024, vol. 11, pp. 1291– 1301. https://doi.org/10.1016/j.egyr.2024.01.006
Pradhan P., Mohan O., Kurian V., Kumar A. Production and Quality Analysis of Biofuel Pellets from Canadian Forest and Agricultural Biomass. Biomass and Bioenergy, 2025, vol. 194, art. no. 107697. https://doi.org/10.1016/j.biombioe.2025.107697
Uzoagba C.E.J., Okoroigwe E., Kadivar M., Anye V.C., Bello A., Ezealigo U., Ngasoh F.O., Pereira H., Onwualu P.A. Characterization of Wood, Leaves, Barks, and Pod Wastes from Prosopis africana Biomass for Biofuel Production. Waste Management Bulletin, 2024, vol. 2, iss. 3, pp. 172–182. https://doi.org/10.1016/j.wmb.2024.07.007
Yaqoob A.A., Sekeri S.H., Othman M.B.H., Ibrahim M.N.M., Feizi Z.H. Thermal Degradation and Kinetics Stability Studies of Oil Palm (Elaeis Guineensis) Biomass-Derived Lignin Nanoparticle and its Application as an Emulsifying Agent. Arabian Journal of Chemistry, 2021, vol. 14, iss. 6, art. no. 103182. https://doi.org/10.1016/j.arabjc.2021.103182