Потенциальные диагностические биомаркеры глиом в жидких средах организма

Авторы

  • Ольга Владимировна Красникова Приволжский исследовательский медицинский университет https://orcid.org/0000-0002-4425-1819
  • А.Р. Кондратьева Приволжский исследовательский медицинский университет https://orcid.org/0000-0001-8450-4537
  • С.К. Баду Приволжский исследовательский медицинский университет https://orcid.org/0000-0001-9514-3810
  • И.А. Медяник Приволжский исследовательский медицинский университет https://orcid.org/0000-0002-7519-0959
  • А.С. Гордецов Приволжский исследовательский медицинский университет https://orcid.org/0000-0002-4767-9108

DOI:

https://doi.org/10.37482/2687-1491-Z090

Ключевые слова:

диагностика рака головного мозга, биомаркеры глиом, кровь, жидкая биопсия, спинномозговая жидкость, YKL-40, внеклеточные нуклеиновые кислоты, внеклеточные везикулы

Аннотация

Современная диагностика различных форм злокачественных опухолей мозга (глиом) проводится преимущественно методами визуализации, такими как магнитно-резонансная томография, электроэнцефалография, позитронно-эмиссионная томография, также применяется биопсия головного мозга. Недостатками данных методов являются их неточность и инвазивность, влекущие за собой определенные риски для здоровья пациента, поэтому в современной науке актуален поиск более достоверных и безопасных способов диагностики глиом, в т. ч. поиск биомаркеров данного вида рака в крови и спинномозговой жидкости. Целью обзора являлся сбор данных об обнаруженных в настоящее время и имеющих диагностическую значимость потенциальных биомаркерах злокачественных опухолей головного мозга в жидких средах организма, в частности в спинномозговой жидкости и крови. Поиск информации производился в базах данных UpToDate, eLibrary, PubMed, Medline, Scopus, поисковых системах Google Scholar, Web of Science, также были использованы материалы сайта Всемирной организации здравоохранения. В обзор преимущественно включались статьи, написанные за последние 5 лет. Найдена информация о таких биомаркерах, как микроРНК-15b и микроРНК-125b, пролин, гликопротеин YKL-40, циркДНК (циркулирующая ДНК) и циркРНК (циркулирующая РНК), внеклеточные везикулы, жирные кислоты, синтазы жирных кислот. Авторами сделан вывод, что следующие биомаркеры: YKL-40, циркДНК и циркРНК, внеклеточные везикулы – имеют крупную доказательную базу и могут уже использоваться в клинической практике. Остальные био-маркеры требуют более подробных и обширных исследований.

Скачивания

Данные скачивания пока недоступны.

Библиографические ссылки

Louis D.N., Schiff D., Batchelor T. Classification and Pathologic Diagnosis of Gliomas. URL: https://www.uptodate.com/contents/classification-and-pathologic-diagnosis-of-gliomas/ (дата обращения: 13.05.2021).

Weller M., van den Bent M., Preusser M., Le Rhun E., Tonn J.C., Minniti G., Bendszus M., Balana C., Chinot O., Dirven L., French P., Hegi M.E., Jakola A.S., Platten M., Roth P., Rudà R., Short S., Smits M., Taphoorn M.J.B., von Deimling A., Westphal M., Soffietti R., Reifenberger G., Wick W. EANO Guidelines on the Diagnosis and Treatment of Diffuse Gliomas of Adulthood // Nat. Rev. Clin. Oncol. 2021. Vol. 18, № 3. P. 170–186. DOI: 10.1038/s41571-020-00447-z

Gupta A., Dwivedi T. A Simplified Overview of World Health Organization Classification Update of Central Nervous System Tumors 2016 // J. Neurosci. Rural Pract. 2017. Vol. 8, № 4. P. 629–641. DOI: 10.4103/jnrp.jnrp_168_17

Batchelor T. Initial Treatment and Prognosis of Newly Diagnosed Glioblastoma in Adults. URL: https://www.uptodate.com/contents/initial-treatment-and-prognosis-of-newly-diagnosed-glioblastoma-in-adults#:~:text=Most%20patients%20are%20managed%20with,two%20years%20in%20most%20patients/ (дата обращения: 13.05.2021).

Promoting Cancer Early Diagnosis. URL: https://www.uptodate.com/contents/initial-treatment-and-prognosis-of-newly-diagnosed-glioblastoma-in-adults#:~:text=Most%20patients%20are%20managed%20with,two%20years%20in%20most%20patients/ (дата обращения: 13.05.2021).

Drappatz J., Avila E.K. Seizures in Patients with Primary and Metastatic Brain Tumors. URL: https://www.uptodate.com/contents/seizures-in-patients-with-primary-and-metastatic-brain-tumors#:~:text=Seizures%20are%20a%20common%20and,disorder%20is%20usually%20made%20clinically/ (дата обращения: 13.05.2021).

Albert N.L., Weller M., Suchorska B., Galldiks N., Soffietti R., Kim M.M., la Fougère C., Pope W., Law I., Arbizu J., Chamberlain M.C., Vogelbaum M., Ellingson B.M., Tonn J.C. Response Assessment in Neuro-Oncology Working Group and European Association for Neuro-Oncology Recommendations for the Clinical Use of PET Imaging in Gliomas // Neuro Oncol. 2016. Vol. 18, № 9. P. 1199–1208. DOI: 10.1093/neuonc/now058

Shankar G.M., Balaj L., Stott S.L., Nahed B., Carter B.S. Liquid Biopsy for Brain Tumors // Expert Rev. Mol. Diagn. 2017. Vol. 17, № 10. P. 943–947. DOI: 10.1080/14737159.2017.1374854

Wang J., Bettegowda C. Applications of DNA-Based Liquid Biopsy for Central Nervous System Neoplasms // J. Mol. Diagn. 2017. Vol. 19, № 1. P. 24–34. DOI: 10.1016/j.jmoldx.2016.08.007

Дон Е.С., Тарасов А.В., Эпштейн О.И., Тарасов С.А. Биомаркеры в медицине: поиск, выбор, изучение и валидация // Клин. лаб. диагностика. 2017. Т. 62, № 1. С. 52–59.

Califf R.M. Biomarker Definitions and Their Applications // Exp. Biol. Med. (Maywood). 2018. Vol. 243, № 3. P. 213–221. DOI: 10.1177/1535370217750088

Müller Bark J., Kulasinghe A., Chua B., Day B.W., Punyadeera C. Circulating Biomarkers in Patients with Glioblastoma // Br. J. Cancer. 2020. Vol. 122, № 3. P. 295–305. DOI: 10.1038/s41416-019-0603-6

Pandey R., Caflisch L., Lodi A., Brenner A.J., Tiziani S. Metabolomic Signature of Brain Cancer // Mol. Carcinog. 2017. Vol. 56, № 11. P. 2355–2371. DOI: 10.1002/mc.22694

Vettore L., Westbrook R.L., Tennant D.A. New Aspects of Amino Acid Metabolism in Cancer // Br. J. Cancer. 2020. Vol. 122, № 2. P. 150–156. DOI: 10.1038/s41416-019-0620-5

Waitkus M.S., Diplas B.H., Yan H. Biological Role and Therapeutic Potential of IDH Mutations in Cancer // Cancer Cell. 2018. Vol. 34, № 2. P. 186–195. DOI: 10.1016/j.ccell.2018.04.011

Batchelor T., Louis D.N. Molecular Pathogenesis of Diffuse Gliomas. URL: https://www.uptodate.com/contents/molecular-pathogenesis-of-diffuse-gliomas (дата обращения: 13.05.2021).

Zhao S., Lin Y., Xu W., Jiang W., Zha Z., Wang P., Yu W., Li Z., Gong L., Peng Y., Ding J., Lei Q., Guan K.L., Xiong Y. Glioma-Derived Mutations in IDH1 Dominantly Inhibit IDH1 Catalytic Activity and Induce HIF-1α // Science. 2009. Vol. 324, № 5924. P. 261–265. DOI: 10.1126/science.1170944

Mereiter S., Balmaña M., Campos D., Gomes J., Reis C.A. Glycosylation in the Era of Cancer-Targeted Therapy: Where Are We Heading? // Cancer Cell. 2019. Vol. 36, № 1. P. 6–16. DOI: 10.1016/j.ccell.2019.06.006

Pinho S.S., Reis C.A. Glycosylation in Cancer: Mechanisms and Clinical Implications // Nat. Rev. Cancer. 2015. Vol. 15, № 9. P. 540–555. DOI: 10.1038/nrc3982

Dusoswa S., Verhoeff J., Abels E., Breakefield X., Noske D., Würdinger T., Broekman M., Van Kooyk Y., Garcia-Vallejo J. TMIC-28. Glioblastoma Exploits Cell Surface Glycosylation-Mediated Immune Regulatory Circuits for Immune Escape // Neuro Oncol. 2018. Vol. 20, № 6. P. vi262. DOI: 10.1093/neuonc/noy148.1087

Tsuchiya N., Yamanaka R., Yajima N., Homma J., Sano M., Komata T., Ikeda T., Fujimoto I., Takahashi H., Tanaka R., Ikenaka K. Isolation and Characterization of an N-Linked Oligosaccharide That Is Increased in Glioblastoma Tissue and Cell Lines // Int. J. Oncol. 2005. Vol. 27, № 5. P. 1231–1239.

Veillon L., Fakih C., Abou-El-Hassan H., Kobeissy F., Mechref Y. Glycosylation Changes in Brain Cancer // ACS Chem. Neurosci. 2018. Vol. 9, № 1. P. 51–72. DOI: 10.1021/acschemneuro.7b00271

Linhares P., Carvalho B., Vaz R., Costa B.M. Glioblastoma: Is There Any Blood Biomarker with True Clinical Relevance? // Int. J. Mol. Sci. 2020. Vol. 21, № 16. Art. № 5809. DOI: 10.3390/ijms21165809

Qin G., Li X., Chen Z., Liao G., Su Y., Chen Y., Zhang W. Prognostic Value of YKL-40 in Patients with Glioblastoma: A Systematic Review and Meta-Analysis // Mol. Neurobiol. 2017. Vol. 54, № 5. P. 3264–3270. DOI: 10.1007/s12035-016-9878-2

Diehl F., Schmidt K., Choti M.A., Romans K., Goodman S., Li M., Thornton K., Agrawal N., Sokoll L., Szabo S.A., Kinzler K.W., Vogelstein B., Diaz L.A. Jr. Circulating Mutant DNA to Assess Tumor Dynamics // Nat. Med. 2008. Vol. 14, № 9. P. 985–990. DOI: 10.1038/nm.1789

Heidrich I., Ačkar L., Mossahebi Mohammadi P., Pantel K. Liquid Biopsies: Potential and Challenges // Int. J.Cancer. 2021. Vol. 148, № 3. P. 528–545. DOI: 10.1002/ijc.33217

Alix-Panabières C. The Future of Liquid Biopsy // Nature. 2020. Vol. 579, suppl. 9. DOI: 10.1038/d41586-020-00844-5

Liang J., Zhao W., Lu C., Liu D., Li P., Ye X., Zhao Y., Zhang J., Yang D. Next-Generation Sequencing Analysis of ctDNA for the Detection of Glioma and Metastatic Brain Tumors in Adults // Front. Neurol. 2020. Vol. 11. Art. № 544. DOI: 10.3389/fneur.2020.00544

Mouliere F., Chandrananda D., Piskorz A.M., Moore E.K., Morris J., Ahlborn L.B., Mair R., Goranova T., Marass F., Heider K., Wan J.C.M., Supernat A., Hudecova I., Gounaris I., Ros S., Jimenez-Linan M., Garcia-Corbacho J., Patel K., Østrup O., Murphy S., Eldridge M.D., Gale D., Stewart G.D., Burge J., Cooper W.N., van der Heijden M.S., Massie C.E., Watts C., Corrie P., Pacey S., Brindle K.M., Baird R.D., Mau-Sørensen M., Parkinson C.A., Smith C.G., Brenton J.D., Rosenfeld N. Enhanced Detection of Circulating Tumor DNA by Fragment Size Analysis // Sci. Transl. Med. 2018. Vol. 10, № 466. DOI: 10.1126/scitranslmed.aat4921

Mouliere F., Mair R., Chandrananda D., Marass F., Smith C.G., Su J., Morris J., Watts C., Brindle K.M., Rosenfeld N. Detection of Cell‐Free DNA Fragmentation and Copy Number Alterations in Cerebrospinal Fluid from Glioma Patients // EMBO Mol. Med. 2018. Vol. 10, № 12. Art. № e9323. DOI: 10.15252/emmm.201809323

Huang T.Y., Piunti A., Lulla R.R., Qi J., Horbinski C.M., Tomita T., James C.D., Shilatifard A., Saratsis A.M. Detection of Histone H3 Mutations in Cerebrospinal Fluid-Derived Tumor DNA from Children with Diffuse Midline Glioma // Acta Neuropathol. Commun. 2017. Vol. 5, № 1. Art. № 28. DOI: 10.1186/s40478-017-0436-6

Sun J., Li B., Shu C., Ma Q., Wang J. Functions and Clinical Significance of Circular RNAs in Glioma // Mol. Cancer. 2020. № 19. Art. № 34. DOI: 10.1186/s12943-019-1121-0

Rybak-Wolf A., Stottmeister C., Glažar P., Jens M., Pino N., Giusti S., Hanan M., Behm M., Bartok O., Ashwal-Fluss R., Herzog M., Schreyer L., Papavasileiou P., Ivanov A., Öhman M., Refojo D., Kadener S., Rajewsky N. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed // Mol. Cell. 2015. Vol. 58, № 5. P. 870–885. DOI: 10.1016/j.molcel.2015.03.027

Guarnerio J., Bezzi M., Jeong J.C., Paffenholz S.V., Berry K., Naldini M.M., Lo-Coco F., Tay Y., Beck A.H., Pandolfi P.P. Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations // Cell. 2016. Vol. 166, № 4. P. 1055–1056. DOI: 10.1016/j.cell.2016.07.035

Zhu J., Ye J., Zhang L., Xia L., Hu H., Jiang H., Wan Z., Sheng F., Ma Y., Li W., Qian J., Luo C. Differential Expression of Circular RNAs in Glioblastoma Multiforme and Its Correlation with Prognosis // Transl. Oncol. 2017. Vol. 10, № 2. P. 271–279. DOI: 10.1016/j.tranon.2016.12.006

Chen A., Zhong L., Ju K., Lu T., Lv J., Cao H. Plasmatic circRNA Predicting the Occurrence of Human Glioblastoma // Cancer Manag. Res. 2020. № 12. P. 2917–2923. DOI: 10.2147/CMAR.S248621

Wen G., Zhou T., Gu W. The Potential of Using Blood Circular RNA as Liquid Biopsy Biomarker for Human Diseases // Protein Cell. 2020. Vol. 12, № 12. Р. 911–946. DOI: 10.1007/s13238-020-00799-3

Osti D., Del Bene M., Rappa G., Santos M., Matafora V., Richichi C., Faletti S., Beznoussenko G.V., Mironov A., Bachi A., Fornasari L., Bongetta D., Gaetani P., DiMeco F., Lorico A., Pelicci G. Clinical Significance of Extracellular Vesicles in Plasma from Glioblastoma Patients // Clin. Cancer Res. 2019. Vol. 25, № 1. P. 266–276. DOI: 10.1158/1078-0432.CCR-18-1941

van Niel G., DʼAngelo G., Raposo G. Shedding Light on the Cell Biology of Extracellular Vesicles // Nat. Rev. Mol. Cell Biol. 2018. Vol. 19, № 4. P. 213–228. DOI: 10.1038/nrm.2017.125

Minciacchi V.R., Spinelli C., Reis-Sobreiro M., Cavallini L., You S., Zandian M., Li X., Mishra R., Chiarugi P., Adam R.M., Posadas E.M., Viglietto G., Freeman M.R., Cocucci E., Bhowmick N.A., Di Vizio D. MYC Mediates Large Oncosome-Induced Fibroblast Reprogramming in Prostate Cancer // Cancer Res. 2017. Vol. 77, № 9. P. 2306–2317. DOI: 10.1158/0008-5472.CAN-16-2942

Quezada C., Torres Á., Niechi I., Uribe D., Contreras-Duarte S., Toledo F., San Martín R., Gutiérrez J., Sobrevia L. Role of Extracellular Vesicles in Glioma Progression // Mol. Aspects Med. 2018. № 60. P. 38–51. DOI: 10.1016/j.mam.2017.12.003

Mahmoudi K., Ezrin A., Hadjipanayis C. Small Extracellular Vesicles as Tumor Biomarkers for Glioblastoma // Mol. Aspects Med. 2015. № 45. P. 97–102. DOI: 10.1016/j.mam.2015.06.008

Lane R., Simon T., Vintu M., Solkin B., Koch B., Stewart N., Benstead-Hume G., Pearl F.M.G., Critchley G., Stebbing J., Giamas G. Cell-Derived Extracellular Vesicles Can Be Used as a Biomarker Reservoir for Glioblastoma Tumor Subtyping // Commun. Biol. 2019. № 2. Art. № 315. DOI: 10.1038/s42003-019-0560-x

Mallawaaratchy D.M., Hallal S., Russell B., Ly L., Ebrahimkhani S., Wei H., Christopherson R.I., Buckland M.E., Kaufman K.L. Comprehensive Proteome Profiling of Glioblastoma-Derived Extracellular Vesicles Identifies Markers for More Aggressive Disease // J. Neurooncol. 2017. Vol. 131, № 2. P. 233–244. DOI: 10.1007/s11060-016-2298-3

Guo D., Bell E.H., Chakravarti A. Lipid Metabolism Emerges as a Promising Target for Malignant Glioma Therapy // CNS Oncol. 2013. Vol. 2, № 3. P. 289–299. DOI: 10.2217/cns.13.20

Ricklefs F., Mineo M., Rooj A.K., Nakano I., Charest A., Weissleder R., Breakefield X.O., Chiocca E.A., Godlewski J., Bronisz A. Extracellular Vesicles from High-Grade Glioma Exchange Diverse Pro-Oncogenic Signals That Maintain Intratumoral Heterogeneity // Cancer Res. 2016. Vol. 76, № 10. P. 2876–2881. DOI: 10.1158/0008-5472. CAN-15-3432

Taïb B., Aboussalah A.M., Moniruzzaman M., Chen S., Haughey N.J., Kim S.F., Ahima R.S. Lipid Accumulation and Oxidation in Glioblastoma Multiforme // Sci. Rep. 2019. Vol. 9, № 1. Art. № 19593. DOI: 10.1038/s41598-019-55985-z

Mulvihill M.M., Nomura D.K. Therapeutic Potential of Monoacylglycerol Lipase Inhibitors // Life Sci. 2013. Vol. 92, № 8-9. P. 492–497. DOI: 10.1016/j.lfs.2012.10.025

Ricklefs F.L., Maire C.L., Matschke J., Dührsen L., Sauvigny T., Holz M., Kolbe K., Peine S., Herold-Mende C., Carter B., Chiocca E.A., Lawler S.E., Westphal M., Lamszus K. FASN Is a Biomarker Enriched in Malignant Glioma-Derived Extracellular Vesicles // Int. J. Mol. Sci. 2020. Vol. 21, № 6. Art. № 1931. DOI: 10.3390/ijms21061931

Mishra S., Yadav T., Rani V. Exploring miRNA Based Approaches in Cancer Diagnostics and Therapeutics // Crit. Rev. Oncol. Hematol. 2016. № 98. P. 12–23. DOI: 10.1016/j.critrevonc.2015.10.003

Ma C., Nguyen H.P.T., Luwor R.B., Stylli S.S., Gogos A., Paradiso L., Kaye A.H., Morokoff A.P. A Comprehensive Meta-Analysis of Circulation miRNAs in Glioma as Potential Diagnostic Biomarker // PLoS One. 2018. Vol. 13, № 2. Art. № e0189452. DOI: 10.1371/journal.pone.0189452

Di Leva G., Garofalo M., Croce C.M. MicroRNAs in Cancer // Annu. Rev. Pathol. 2014. Vol. 9. P. 287–314. DOI: 10.1146/annurev-pathol-012513-104715

Загрузки

Опубликован

2022-02-22

Как цитировать

Красникова, О. В., Кондратьева, А., Баду, С., Медяник, И., & Гордецов, А. (2022). Потенциальные диагностические биомаркеры глиом в жидких средах организма. Журнал медико-биологических исследований, 10(1), 52–63. https://doi.org/10.37482/2687-1491-Z090