Грануляционная ткань как разновидность соединительных тканей (обзор)

Авторы

DOI:

https://doi.org/10.37482/2687-1491-Z098

Ключевые слова:

фибробласт, миофибробласт, соединительная ткань, рубцы, кожа

Аннотация

Современные ученые не имеют единого мнения о месте тканей рубца и, в частности, грануляционной ткани в классификации волокнистых соединительных тканей. Обобщение литературных данных о строении и развитии фиброзных тканей рубца стало целью данной статьи. В фокусе работы оказалась грануляционная ткань. Показано, что основными клетками грануляционной ткани являются миофибробласты, в совокупности с фибробластами, а также старые фибробласты, эндотелиальные клетки и иммунные клетки. Миофибробласты характеризуются развитым цитоскелетом, представленным стресс-волокнами, что обеспечивает активную миграцию этих клеток и ремоделирование окружающего межклеточного вещества. Развитый синтетический аппарат миофибробласта кроме синтеза компонентов межклеточного вещества обусловливает паракринную активность клетки, поддерживающую гомеостаз клеточных компонентов грануляционной ткани. Межклеточное вещество грануляционной ткани представлено волокнами коллагена III типа, эластические волокна отсутствуют. Основное аморфное вещество обладает высокой степенью гидратации и низкой механической жесткостью, богато гликозаминогликанами, коллагеназами и фибронектином, что значительно облегчает миграцию миофибробластов, эндотелиоцитов и клеток – предшественниц фибробластов. Способность межклеточного вещества накапливать ростовые факторы играет важную роль в трансдифференцировке клеток-предшественниц в миофибробласты. Сосуды грануляционной ткани являются источником клеток-предшественниц, играющих ключевую роль в формировании гранул новообразованной ткани вокруг сосуда. Апоптоз миофибробластов служит пусковым механизмом дифференцировки грануляционной ткани в плотную волокнистую неоформленную соединительную ткань. Одновременно с этим коллаген III типа замещается на коллаген I типа, появляются эластические волокна, тормозится ангиогенез и запускаются механизмы, обеспечивающие симпатическую иннервацию соединительной ткани. Таким образом, грануляционную ткань можно рассматривать как временную соединительную ткань, являющуюся одним из примеров дедифференцировки, протекающей не только на клеточном, но и на тканевом уровне.

Скачивания

Данные скачивания пока недоступны.

Библиографические ссылки

Григорова А.Н., Владимирова О.В., Минаев С.В., Сирак А.Г., Долгашова М.А., Любанская О.В., Магомедова О.Г. Роль морфофункциональных взаимодействий клеточных структур соединительной ткани в патогенезе патологического рубцеобразования у детей // Forcipe. 2020. Т. 3, № S2. С. 45–48.

Маркелова М.В., Резник Л.Б., Кононов А.В., Дзюба Г.Г., Силантьев В.Н., Турушев М.А., Кузнецов Н.К. Влияние радиочастотной абляции на гисто- и фиброархитектонику подошвенного апоневроза у собак при фасциопатии, моделированной алпростадилом // Журн. анатомии и гистопатологии. 2020. Т. 9, № 1. С. 56–63. DOI: 10.18499/2225-7357-2020-9-1-56-63

Воронцова З.А., Ноздреватых А.А., Образцова А.Е. Экспериментально-клиническое обоснование использования мази эбермин в местном лечении ран (краткий обзор литературы) // Вестн. новых мед. технологий. 2021. Т. 28, № 1. С. 41–44. DOI: 10.24412/1609-2163-2021-1-41-44

Ковалев Г.А., Чиж Н.А., Волина В.В., Белочкина И.В., Михайлова И.П., Мусатова И.Б. Морфологическое исследование тканей после минно-взрывной травмы в эксперименте // Морфология. 2019. Т. 13, № 2. С. 45–53. DOI: 10.26641/1997-9665.2019.2.45-53

Фисталь Э.Я., Попандопуло А.Г., Солошенко В.В., Мовчан К.Н., Романенков Н.С., Яковенко О.И., Гедгафов Р.М. Об эффективности клеточных технологий при пластическом закрытии обширных дефектов мягких тканей // Вестн. Рос. воен.-мед. акад. 2020. № 3(71). С. 88–92.

Гимранов В.В., Гиниятуллин И.Т. Влияние субтилиновой мази на морфологические показатели заживления ран у кроликов // Вестн. Башкир. гос. аграр. ун-та. 2019. № 4(52). С. 80–85. DOI: 10.31563/1684-7628-2019-52-4-80-86

Шаповалова Е.Ю., Демяшкин Г.А., Бойко Т.А., Барановский Ю.Г., Морозова М.Н., Барановский А.Г., Агеева Е.С. Влияние ауто- и ксеногенных фибробластов и дермального эквивалента на содержание макрофагов в грануляционной ткани ишемизированной раны кожи на 12 сутки регенеративного гистогенеза // Мед. вестн. Сев. Кавказа. 2019. Т. 14, № 1-2. С. 255–260. DOI: 10.14300/mnnc.2019.14028

Martin P., Nunan R. Cellular and Molecular Mechanisms of Repair in Acute and Chronic Wound Healing // Br. J. Dermatol. 2015. Vol. 173, № 2. P. 370–378. DOI: 10.1111/bjd.13954

Гилевич И.В., Сотниченко А.С., Поляков А.В., Богданов С.Б., Мелконян К.И., Медведева Л.А., Порханов В.А. Морфологический анализ результатов комплексного подхода к лечению ожоговой раны с применением дермальных фибробластов // Гены и Клетки. 2019. Т. 14, № S. С. 61–62.

Mazini L., Rochette L., Admou B., Amal S., Malka G. Hopes and Limits of Adipose-Derived Stem Cells (ADSCs) and Mesenchymal Stem Cells (MSCs) in Wound Healing // Int. J. Mol. Sci. 2020. Vol. 21, № 4. Art. № 1306. DOI: 10.3390/ijms21041306

Fan D., Xia Q., Wu S., Ye S., Liu L., Wang W., Guo X., Liu Z. Mesenchymal Stem Cells in the Treatment of Cesarean Section Skin Scars: Study Protocol for a Randomized, Controlled Trial // Trials. 2018. Vol. 19, № 1. Art. № 155. DOI: 10.1186/s13063-018-2478-x

Lassance L., Marino G.K., Medeiros C.S., Thangavadivel S., Wilson S.E. Fibrocyte Migration, Differentiation and Apoptosis During the Corneal Wound Healing Response to Injury // Exp. Eye Res. 2018. Vol. 170. P. 177–187. DOI: 10.1016/j.exer.2018.02.018

Yang L., Scott P.G., Dodd C., Medina A., Jiao H., Shankowsky H.A., Ghahary A., Tredget E.E. Identification of Fibrocytes in Postburn Hypertrophic Scar // Wound Repair Regen. 2005. Vol. 13, № 4. P. 398–404. DOI: 10.1111/j.1067-1927.2005.130407.x

Roife D., Fleming J.B., Gomer R.H. Fibrocytes in the Tumor Microenvironment // Adv. Exp. Med. Biol. 2020. Vol. 1224. P. 79–85. DOI: 10.1007/978-3-030-35723-8_6

Zhang K., Yang X., Zhao Q., Li Z., Fu F., Zhang H., Zheng M., Zhang S. Molecular Mechanism of Stem Cell Differentiation into Adipocytes and Adipocyte Differentiation of Malignant Tumor // Stem Cells Int. 2020. Vol. 2020. Art. № 8892300. DOI: 10.1155/2020/8892300

Alibardi L. Ultrastructural Analysis of Early Regenerating Lizard Tail Suggests That a Process of Dedifferentiation Is Involved in the Formation of the Regenerative Blastema // J. Morphol. 2018. Vol. 279, № 8. P. 1171–1184. DOI: 10.1002/jmor.20838

Dai Y., Jin K., Feng X., Ye J., Gao C. Regeneration of Different Types of Tissues Depends on the Interplay of Stem Cells-Laden Constructs and Microenvironments in vivo // Mater. Sci. Eng. C Mater. Biol. Appl. 2019. Vol. 94. Р. 938–948. DOI: 10.1016/j.msec.2018.10.035

Alhajj M., Bansal P., Goyal A. Physiology, Granulation Tissue // StatPearls. Treasure Island: StatPearls Publishing, 2022. URL: https://www.ncbi.nlm.nih.gov/books/NBK554402/ (дата обращения: 30.10.2021).

Pakshir P., Hinz B. The Big Five in Fibrosis: Macrophages, Myofibroblasts, Matrix, Mechanics, and Miscommunication // Matrix Biol. 2018. Vol. 68–69. P. 81–93. DOI: 10.1016/j.matbio.2018.01.019

Krizhanovsky V., Yon M., Dickins R.A., Hearn S., Simon J., Miething C., Lowe S.W. Senescence of Activated Stellate Cells Limits Liver Fibrosis // Cell. 2008. Vol. 134, № 4. P. 657–667. DOI: 10.1016/j.cell.2008.06.049

Demaria M., Ohtani N., Youssef S.A., Rodier F., Toussaint W., Mitchell J.R., Laberge R.-M., Vijg J., Van Steeg H., Dollé M.E., Hoeijmakers J.H., de Bruin A., Hara E., Campisi J. An Essential Role for Senescent Cells in Optimal Wound Healing Through Secretion of PDGF-AA // Dev. Cell. 2014. Vol. 31. P. 722–733. DOI: 10.1016/j.devcel.2014.11.012

Hoare M., Ito Y., Kang T.W., Weekes M.P., Matheson N.J., Patten D.A., Shetty S., Parry A.J., Menon S., Salama R., Antrobus R., Tomimatsu K., Howat W., Lehner P.J., Zender L., Narita M. NOTCH1 Mediates a Switch Between Two Distinct Secretomes During Senescence // Nat. Cell Biol. 2016. Vol. 18, № 9. Р. 979– 992. DOI: 10.1038/ncb3397

Acosta J.C., Banito A., Wuestefeld T., Georgilis A., Janich P., Morton J.P., Athineos D., Kang T.W., Lasitschka F., Andrulis M., Pascual G., Morris K.J., Khan S., Jin H., Dharmalingam G., Snijders A.P., Carroll T., Capper D., Pritchard C., Inman G.J., Longerich T., Sansom O.J., Benitah S.A., Zender L., Gil J. A Complex Secretory Program Orchestrated by the Inflammasome Controls Paracrine Senescence // Nat. Cell Biol. 2013. Vol. 15, № 8. Р. 978– 990. DOI: 10.1038/ncb2784

Nelson G., Wordsworth J., Wang C., Jurk D., Lawless C., Martin-Ruiz C., von Zglinicki T. A Senescent Cell Bystander Effect: Senescence-Induced Senescence // Aging Cell. 2012. Vol. 11, № 2. P. 345– 349. DOI: 10.1111/j.1474-9726.2012.00795.x

Schafer M.J., White T.A., Iijima K., Haak A.J., Ligresti G., Atkinson E.J., Oberg A.L., Birch J., Salmonowicz H., Zhu Y., Mazula D.L., Brooks R.W., Fuhrmann-Stroissnigg H., Pirtskhalava T., Prakash Y.S., Tchkonia T., Robbins P.D., Aubry M.C., Passos J.F., Kirkland J.L., Tschumperlin D.J., Kita H., LeBrasseur N.K. Cellular Senescence Mediates Fibrotic Pulmonary Disease // Nat. Commun. 2017. Vol. 8. Art. № 14532. DOI: 10.1038/ncomms14532

Ribatti D., Tamma R. Giulio Gabbiani and the Discovery of Myofibroblasts // Inflamm. Res. 2019. Vol. 68, № 3. P. 241–245. DOI: 10.1007/s00011-018-01211-x

Kattan W.M., Alarfaj S.F., Alnooh B.M., Alsaif H.F., Alabdul Karim H.S., Al-Qattan N.M., Al-Qattan M.M., El-Sayed A.A. Myofibroblast-Mediated Contraction // J. Coll. Physicians Surg. Pak. 2017. Vol. 27, № 1. P. 38–43.

Bagalad B.S., Mohan Kumar K.P., Puneeth H.K. Myofibroblasts: Master of Disguise // J. Oral Maxillofac. Pathol. 2017. Vol. 21, № 3. P. 462–463. DOI: 10.4103/jomfp.JOMFP_146_15

Yuan Q., Tan R.J., Liu Y. Myofibroblast in Kidney Fibrosis: Origin, Activation, and Regulation // Adv. Exp. Med. Biol. 2019. Vol. 1165. P. 253–283. DOI: 10.1007/978-981-13-8871-2_12

Salton F., Volpe M.C., Confalonieri M. Epithelial–Mesenchymal Transition in the Pathogenesis of Idiopathic Pulmonary Fibrosis // Medicina (Kaunas). 2019. Vol. 55, № 4. Art. № 83. DOI: 10.3390/medicina55040083

Hinz B., Mastrangelo D., Iselin C.E., Chaponnier C., Gabbiani G. Mechanical Tension Controls Granulation Tissue Contractile Activity and Myofibroblast Differentiation // Am. J. Pathol. 2001. Vol. 159, № 3. P. 1009–1020. DOI: 10.1016/S0002-9440(10)61776-2

Darby I.A., Laverdet B., Bonté F., Desmoulière A. Fibroblasts and Myofibroblasts in Wound Healing // Clin. Cosmet. Investig. Dermatol. 2014. Vol. 7. P. 301–311. DOI: 10.2147/CCID.S50046

Hinz B. Formation and Function of the Myofibroblast During Tissue Repair // J. Invest. Dermatol. 2007. Vol. 127, № 3. P. 526–537. DOI: 10.1038/sj.jid.5700613

Razdan N., Vasilopoulos T., Herbig U. Telomere Dysfunction Promotes Transdifferentiation of Human Fibroblasts into Myofibroblasts // Aging Cell. 2018. Vol. 17, № 6. Art. № e12838. DOI: 10.1111/acel.12838

Tomasek J.J., Gabbiani G., Hinz B., Chaponnier C., Brown R.A. Myofibroblasts and Mechano-Regulation of Connective Tissue Remodelling // Nat. Rev. Mol. Cell Biol. 2002. Vol. 3. P. 349–363. DOI: 10.1038/nrm809

Petrov V.V., van Pelt J.F., Vermeesch J.R., Van Duppen V.J., Vekemans K., Fagard R.H., Lijnen P.J. TGF-β1- Induced Cardiac Myofibroblasts Are Nonproliferating Functional Cells Carrying DNA Damages // Exp. Cell Res. 2008. Vol. 314. P. 1480–1494. DOI: 10.1016/j.yexcr.2008.01.014

Shook B.A., Wasko R.R., Mano O., Rutenberg-Schoenberg M., Rudolph M.C., Zirak B., Rivera-Gonzalez G.C., López-Giráldez F., Zarini S., Rezza A., Clark D.A., Rendl M., Rosenblum M.D., Gerstein M.B., Horsley V. Dermal Adipocyte Lipolysis and Myofibroblast Conversion Are Required for Efficient Skin Repair // Cell Stem Cell. 2020. Vol. 26, № 6. P. 880–895. Art. № e6. DOI: 10.1016/j.stem.2020.03.013

Breen E., Tang K., Olfert M., Knapp A., Wagner P. Skeletal Muscle Capillarity During Hypoxia: VEGF and Its Activation // High Alt. Med. Biol. 2008. Vol. 9, № 2. P. 158–166. DOI: 10.1089/ham.2008.1010

Филиппова О.В., Афоничев К.А., Красногорский И.Н., Вашетко Р.В. Клинико-морфологические особенности сосудистого русла гипертрофической рубцовой ткани в разные сроки ее формирования // Ортопедия, травматология и восстановит. хирургия дет. возраста. 2017. Т. 5, вып. 3. C. 25–35. DOI: 10.17816/PTORS5325-36

Ma J., Wang Q., Fei T., Han J.-D.J., Chen Y.-G. MCP-1 Mediates TGF-β-Induced Angiogenesis by Stimulating Vascular Smooth Muscle Cell Migration // Blood. 2007. Vol. 109. P. 987–994. DOI: 10.1182/blood-2006-07-036400

Wallace H.A., Basehore B.M., Zito P.M. Wound Healing Phases // StatPearls. Treasure Island: StatPearls Publishing, 2022. URL: https://www.ncbi.nlm.nih.gov/books/NBK470443/ (дата обращения: 15.11.2021).

Komi D.E.A., Khomtchouk K., Santa Maria P.L. A Review of the Contribution of Mast Cells in Wound Healing: Involved Molecular and Cellular Mechanisms // Clin. Rev. Allergy Immunol. 2020. Vol. 58, № 3. P. 298–312. DOI: 10.1007/s12016-019-08729-w

Ellis S., Lin E.J., Tartar D. Immunology of Wound Healing // Curr. Dermatol. Rep. 2018. Vol. 7, № 4. P. 350–358. DOI: 10.1007/s13671-018-0234-9

Dudas M., Wysocki A., Gelpi B., Tuan T.-L. Memory Encoded Throughout Our Bodies: Molecular and Cellular Basis of Tissue Regeneration // Pediatr. Res. 2008. Vol. 63, № 5. P. 502–512. DOI: 10.1203/PDR.0b013e31816a7453

Wipff P.-J., Rifkin D.B., Meister J.-J., Hinz B. Myofibroblast Contraction Activates Latent TGF-β1 from the Extracellular Matrix // J. Cell Biol. 2007. Vol. 179, № 6. P. 1311–1323. DOI: 10.1083/jcb.200704042

Yeung T., Georges P.C., Flanagan L.A., Marg B., Ortiz M., Funaki M., Zahir N., Ming W., Weaver V., Janmey P.A. Effects of Substrate Stiffness on Cell Morphology, Cytoskeletal Structure, and Adhesion // Cell Motil. Cytoskeleton. 2005. Vol. 60, № 1. P. 24–34.

Iglin V.A., Sokolovskaya O.A., Morozova S.M., Kuchur O.A., Nikonorova V.G., Sharsheeva A., Chrishtop V.V., Vinogradov A.V. Effect of Sol–Gel Alumina Biocomposite on the Viability and Morphology of Dermal Human Fibroblast Cells // ACS Biomater. Sci. Eng. 2020. Vol. 6, № 8. P. 4397–4400. DOI: 10.1021/acsbiomaterials.0c00721

Goffin J.M., Pittet P., Csucs G., Lussi J.W., Meister J.-J., Hinz B. Focal Adhesion Size Controls Tension- Dependent Recruitment of α-Smooth Muscle Actin to Stress Fibers // J. Cell Biol. 2006. Vol. 172, № 2. P. 259–268. DOI: 10.1083/jcb.200506179

Aarabi S., Bhatt K.A., Shi Y., Paterno J., Chang E.I., Loh S.A., Holmes J.W., Longaker M.T., Yee H., Gurtner G.C. Mechanical Load Initiates Hypertrophic Scar Formation Through Decreased Cellular Apoptosis // FASEB J. 2007. Vol. 21, № 12. P. 3250–3261.

Schultz S.S. Adult Stem Cell Application in Spinal Cord Injury // Curr. Drug Targets. 2005. Vol. 6, № 1. Р. 63–73. DOI: 10.2174/1389450053345046

Macri L., Silverstein D., Clark R.A.F. Growth Factor Binding to the Pericellular Matrix and Its Importance in Tissue Engineering // Adv. Drug Deliv. Rev. 2007. Vol. 59. P. 1366–1381. DOI: 10.1016/j.addr.2007.08.015

Lee H.J., Jang Y.J. Recent Understandings of Biology, Prophylaxis and Treatment Strategies for Hypertrophic Scars and Keloids // Int. J. Mol. Sci. 2018. Vol. 19, № 3. Art. № 711. DOI: 10.3390/ijms19030711

Kumar I., Staton C.A., Cross S.S., Reed M.W., Brown N.J. Angiogenesis, Vascular Endothelial Growth Factor and Its Receptors in Human Surgical Wounds // Br. J. Surg. 2009. Vol. 96, № 12. Р. 1484–1491. DOI: 10.1002/bjs.6778

McCarty M.F., Bielenberg D.R., Nilsson M.B., Gershenwald J.E., Barnhill R.L., Ahearne P., Bucana C.D., Fidler I.J. Epidermal Hyperplasia Overlying Human Melanoma Correlates with Tumour Depth and Angiogenesis // Melanoma Res. 2003. Vol. 13, № 4. Р. 379–387. DOI: 10.1097/00008390-200308000-00007

Shaw T.J., Martin P. Wound Repair at a Glance // J. Cell Sci. 2009. Vol. 122, pt. 18. P. 3209–3213. DOI: 10.1242/jcs.031187

Загрузки

Опубликован

2022-05-24

Как цитировать

Никонорова, В., Криштоп, В., & Румянцева, Т. (2022). Грануляционная ткань как разновидность соединительных тканей (обзор). Журнал медико-биологических исследований, 10(2), 167–179. https://doi.org/10.37482/2687-1491-Z098