Granulation Tissue as a Type of Connective Tissue (Review)
DOI:
https://doi.org/10.37482/2687-1491-Z098Keywords:
fibroblast, myofibroblast, connective tissue, scars, skin, structure of granulation tissue, functions of granulation tissueAbstract
Currently, there is no consensus among scientists on the place of scar tissue and, in particular, granulation tissue in the classification of fibrous connective tissue. This paper aimed to generalize literature data on the structure and development of fibrous scar tissue. It is demonstrated that granulation tissue is mostly composed of myofibroblasts, along with fibroblasts, as well as old fibroblasts, endothelial cells, and immune cells. Myofibroblasts are characterized by a developed cytoskeleton represented by stress fibers, which ensures active migration of these cells and remodelling of the surrounding intercellular substance. The developed synthetic apparatus of the myofibroblast, in addition to synthesis of the intercellular substance, provides cell paracrine activity, which maintains the homeostasis of the cellular components of granulation tissue. The intercellular substance is represented by type III collagen fibers; elastic fibers are absent. The ground substance has a high degree of hydration and low stiffness and is rich in glycosaminoglycans, collagenases and fibronectin; this greatly facilitates the migration of myofibroblasts, endotheliocytes and fibrocytes. The ability of the intercellular substance to accumulate growth factors plays an important role in the transdifferentiation of fibrocytes into myofibroblasts. The blood vessels of the granulation tissue are the source of fibrocytes, which play a key role in the formation of granules of the newly formed tissue around the vessel. Myofibroblast apoptosis triggers the differentiation of granulation tissue into dense fibrous loose connective tissue. At the same time, type III collagen is replaced by type I collagen, elastin fibers appear, angiogenesis is inhibited, and mechanisms providing sympathetic innervation of connective tissue are triggered. Thus, granulation tissue can be considered as temporary connective tissue, which is one of the examples of dedifferentiation that occurs not only at the cellular, but also at the tissue level.
Downloads
References
Григорова А.Н., Владимирова О.В., Минаев С.В., Сирак А.Г., Долгашова М.А., Любанская О.В., Магомедова О.Г. Роль морфофункциональных взаимодействий клеточных структур соединительной ткани в патогенезе патологического рубцеобразования у детей // Forcipe. 2020. Т. 3, № S2. С. 45–48.
Маркелова М.В., Резник Л.Б., Кононов А.В., Дзюба Г.Г., Силантьев В.Н., Турушев М.А., Кузнецов Н.К. Влияние радиочастотной абляции на гисто- и фиброархитектонику подошвенного апоневроза у собак при фасциопатии, моделированной алпростадилом // Журн. анатомии и гистопатологии. 2020. Т. 9, № 1. С. 56–63. DOI: 10.18499/2225-7357-2020-9-1-56-63
Воронцова З.А., Ноздреватых А.А., Образцова А.Е. Экспериментально-клиническое обоснование использования мази эбермин в местном лечении ран (краткий обзор литературы) // Вестн. новых мед. технологий. 2021. Т. 28, № 1. С. 41–44. DOI: 10.24412/1609-2163-2021-1-41-44
Ковалев Г.А., Чиж Н.А., Волина В.В., Белочкина И.В., Михайлова И.П., Мусатова И.Б. Морфологическое исследование тканей после минно-взрывной травмы в эксперименте // Морфология. 2019. Т. 13, № 2. С. 45–53. DOI: 10.26641/1997-9665.2019.2.45-53
Фисталь Э.Я., Попандопуло А.Г., Солошенко В.В., Мовчан К.Н., Романенков Н.С., Яковенко О.И., Гедгафов Р.М. Об эффективности клеточных технологий при пластическом закрытии обширных дефектов мягких тканей // Вестн. Рос. воен.-мед. акад. 2020. № 3(71). С. 88–92.
Гимранов В.В., Гиниятуллин И.Т. Влияние субтилиновой мази на морфологические показатели заживления ран у кроликов // Вестн. Башкир. гос. аграр. ун-та. 2019. № 4(52). С. 80–85. DOI: 10.31563/1684-7628-2019-52-4-80-86
Шаповалова Е.Ю., Демяшкин Г.А., Бойко Т.А., Барановский Ю.Г., Морозова М.Н., Барановский А.Г., Агеева Е.С. Влияние ауто- и ксеногенных фибробластов и дермального эквивалента на содержание макрофагов в грануляционной ткани ишемизированной раны кожи на 12 сутки регенеративного гистогенеза // Мед. вестн. Сев. Кавказа. 2019. Т. 14, № 1-2. С. 255–260. DOI: 10.14300/mnnc.2019.14028
Martin P., Nunan R. Cellular and Molecular Mechanisms of Repair in Acute and Chronic Wound Healing // Br. J. Dermatol. 2015. Vol. 173, № 2. P. 370–378. DOI: 10.1111/bjd.13954
Гилевич И.В., Сотниченко А.С., Поляков А.В., Богданов С.Б., Мелконян К.И., Медведева Л.А., Порханов В.А. Морфологический анализ результатов комплексного подхода к лечению ожоговой раны с применением дермальных фибробластов // Гены и Клетки. 2019. Т. 14, № S. С. 61–62.
Mazini L., Rochette L., Admou B., Amal S., Malka G. Hopes and Limits of Adipose-Derived Stem Cells (ADSCs) and Mesenchymal Stem Cells (MSCs) in Wound Healing // Int. J. Mol. Sci. 2020. Vol. 21, № 4. Art. № 1306. DOI: 10.3390/ijms21041306
Fan D., Xia Q., Wu S., Ye S., Liu L., Wang W., Guo X., Liu Z. Mesenchymal Stem Cells in the Treatment of Cesarean Section Skin Scars: Study Protocol for a Randomized, Controlled Trial // Trials. 2018. Vol. 19, № 1. Art. № 155. DOI: 10.1186/s13063-018-2478-x
Lassance L., Marino G.K., Medeiros C.S., Thangavadivel S., Wilson S.E. Fibrocyte Migration, Differentiation and Apoptosis During the Corneal Wound Healing Response to Injury // Exp. Eye Res. 2018. Vol. 170. P. 177–187. DOI: 10.1016/j.exer.2018.02.018
Yang L., Scott P.G., Dodd C., Medina A., Jiao H., Shankowsky H.A., Ghahary A., Tredget E.E. Identification of Fibrocytes in Postburn Hypertrophic Scar // Wound Repair Regen. 2005. Vol. 13, № 4. P. 398–404. DOI: 10.1111/j.1067-1927.2005.130407.x
Roife D., Fleming J.B., Gomer R.H. Fibrocytes in the Tumor Microenvironment // Adv. Exp. Med. Biol. 2020. Vol. 1224. P. 79–85. DOI: 10.1007/978-3-030-35723-8_6
Zhang K., Yang X., Zhao Q., Li Z., Fu F., Zhang H., Zheng M., Zhang S. Molecular Mechanism of Stem Cell Differentiation into Adipocytes and Adipocyte Differentiation of Malignant Tumor // Stem Cells Int. 2020. Vol. 2020. Art. № 8892300. DOI: 10.1155/2020/8892300
Alibardi L. Ultrastructural Analysis of Early Regenerating Lizard Tail Suggests That a Process of Dedifferentiation Is Involved in the Formation of the Regenerative Blastema // J. Morphol. 2018. Vol. 279, № 8. P. 1171–1184. DOI: 10.1002/jmor.20838
Dai Y., Jin K., Feng X., Ye J., Gao C. Regeneration of Different Types of Tissues Depends on the Interplay of Stem Cells-Laden Constructs and Microenvironments in vivo // Mater. Sci. Eng. C Mater. Biol. Appl. 2019. Vol. 94. Р. 938–948. DOI: 10.1016/j.msec.2018.10.035
Alhajj M., Bansal P., Goyal A. Physiology, Granulation Tissue // StatPearls. Treasure Island: StatPearls Publishing, 2022. URL: https://www.ncbi.nlm.nih.gov/books/NBK554402/ (дата обращения: 30.10.2021).
Pakshir P., Hinz B. The Big Five in Fibrosis: Macrophages, Myofibroblasts, Matrix, Mechanics, and Miscommunication // Matrix Biol. 2018. Vol. 68–69. P. 81–93. DOI: 10.1016/j.matbio.2018.01.019
Krizhanovsky V., Yon M., Dickins R.A., Hearn S., Simon J., Miething C., Lowe S.W. Senescence of Activated Stellate Cells Limits Liver Fibrosis // Cell. 2008. Vol. 134, № 4. P. 657–667. DOI: 10.1016/j.cell.2008.06.049
Demaria M., Ohtani N., Youssef S.A., Rodier F., Toussaint W., Mitchell J.R., Laberge R.-M., Vijg J., Van Steeg H., Dollé M.E., Hoeijmakers J.H., de Bruin A., Hara E., Campisi J. An Essential Role for Senescent Cells in Optimal Wound Healing Through Secretion of PDGF-AA // Dev. Cell. 2014. Vol. 31. P. 722–733. DOI: 10.1016/j.devcel.2014.11.012
Hoare M., Ito Y., Kang T.W., Weekes M.P., Matheson N.J., Patten D.A., Shetty S., Parry A.J., Menon S., Salama R., Antrobus R., Tomimatsu K., Howat W., Lehner P.J., Zender L., Narita M. NOTCH1 Mediates a Switch Between Two Distinct Secretomes During Senescence // Nat. Cell Biol. 2016. Vol. 18, № 9. Р. 979– 992. DOI: 10.1038/ncb3397
Acosta J.C., Banito A., Wuestefeld T., Georgilis A., Janich P., Morton J.P., Athineos D., Kang T.W., Lasitschka F., Andrulis M., Pascual G., Morris K.J., Khan S., Jin H., Dharmalingam G., Snijders A.P., Carroll T., Capper D., Pritchard C., Inman G.J., Longerich T., Sansom O.J., Benitah S.A., Zender L., Gil J. A Complex Secretory Program Orchestrated by the Inflammasome Controls Paracrine Senescence // Nat. Cell Biol. 2013. Vol. 15, № 8. Р. 978– 990. DOI: 10.1038/ncb2784
Nelson G., Wordsworth J., Wang C., Jurk D., Lawless C., Martin-Ruiz C., von Zglinicki T. A Senescent Cell Bystander Effect: Senescence-Induced Senescence // Aging Cell. 2012. Vol. 11, № 2. P. 345– 349. DOI: 10.1111/j.1474-9726.2012.00795.x
Schafer M.J., White T.A., Iijima K., Haak A.J., Ligresti G., Atkinson E.J., Oberg A.L., Birch J., Salmonowicz H., Zhu Y., Mazula D.L., Brooks R.W., Fuhrmann-Stroissnigg H., Pirtskhalava T., Prakash Y.S., Tchkonia T., Robbins P.D., Aubry M.C., Passos J.F., Kirkland J.L., Tschumperlin D.J., Kita H., LeBrasseur N.K. Cellular Senescence Mediates Fibrotic Pulmonary Disease // Nat. Commun. 2017. Vol. 8. Art. № 14532. DOI: 10.1038/ncomms14532
Ribatti D., Tamma R. Giulio Gabbiani and the Discovery of Myofibroblasts // Inflamm. Res. 2019. Vol. 68, № 3. P. 241–245. DOI: 10.1007/s00011-018-01211-x
Kattan W.M., Alarfaj S.F., Alnooh B.M., Alsaif H.F., Alabdul Karim H.S., Al-Qattan N.M., Al-Qattan M.M., El-Sayed A.A. Myofibroblast-Mediated Contraction // J. Coll. Physicians Surg. Pak. 2017. Vol. 27, № 1. P. 38–43.
Bagalad B.S., Mohan Kumar K.P., Puneeth H.K. Myofibroblasts: Master of Disguise // J. Oral Maxillofac. Pathol. 2017. Vol. 21, № 3. P. 462–463. DOI: 10.4103/jomfp.JOMFP_146_15
Yuan Q., Tan R.J., Liu Y. Myofibroblast in Kidney Fibrosis: Origin, Activation, and Regulation // Adv. Exp. Med. Biol. 2019. Vol. 1165. P. 253–283. DOI: 10.1007/978-981-13-8871-2_12
Salton F., Volpe M.C., Confalonieri M. Epithelial–Mesenchymal Transition in the Pathogenesis of Idiopathic Pulmonary Fibrosis // Medicina (Kaunas). 2019. Vol. 55, № 4. Art. № 83. DOI: 10.3390/medicina55040083
Hinz B., Mastrangelo D., Iselin C.E., Chaponnier C., Gabbiani G. Mechanical Tension Controls Granulation Tissue Contractile Activity and Myofibroblast Differentiation // Am. J. Pathol. 2001. Vol. 159, № 3. P. 1009–1020. DOI: 10.1016/S0002-9440(10)61776-2
Darby I.A., Laverdet B., Bonté F., Desmoulière A. Fibroblasts and Myofibroblasts in Wound Healing // Clin. Cosmet. Investig. Dermatol. 2014. Vol. 7. P. 301–311. DOI: 10.2147/CCID.S50046
Hinz B. Formation and Function of the Myofibroblast During Tissue Repair // J. Invest. Dermatol. 2007. Vol. 127, № 3. P. 526–537. DOI: 10.1038/sj.jid.5700613
Razdan N., Vasilopoulos T., Herbig U. Telomere Dysfunction Promotes Transdifferentiation of Human Fibroblasts into Myofibroblasts // Aging Cell. 2018. Vol. 17, № 6. Art. № e12838. DOI: 10.1111/acel.12838
Tomasek J.J., Gabbiani G., Hinz B., Chaponnier C., Brown R.A. Myofibroblasts and Mechano-Regulation of Connective Tissue Remodelling // Nat. Rev. Mol. Cell Biol. 2002. Vol. 3. P. 349–363. DOI: 10.1038/nrm809
Petrov V.V., van Pelt J.F., Vermeesch J.R., Van Duppen V.J., Vekemans K., Fagard R.H., Lijnen P.J. TGF-β1- Induced Cardiac Myofibroblasts Are Nonproliferating Functional Cells Carrying DNA Damages // Exp. Cell Res. 2008. Vol. 314. P. 1480–1494. DOI: 10.1016/j.yexcr.2008.01.014
Shook B.A., Wasko R.R., Mano O., Rutenberg-Schoenberg M., Rudolph M.C., Zirak B., Rivera-Gonzalez G.C., López-Giráldez F., Zarini S., Rezza A., Clark D.A., Rendl M., Rosenblum M.D., Gerstein M.B., Horsley V. Dermal Adipocyte Lipolysis and Myofibroblast Conversion Are Required for Efficient Skin Repair // Cell Stem Cell. 2020. Vol. 26, № 6. P. 880–895. Art. № e6. DOI: 10.1016/j.stem.2020.03.013
Breen E., Tang K., Olfert M., Knapp A., Wagner P. Skeletal Muscle Capillarity During Hypoxia: VEGF and Its Activation // High Alt. Med. Biol. 2008. Vol. 9, № 2. P. 158–166. DOI: 10.1089/ham.2008.1010
Филиппова О.В., Афоничев К.А., Красногорский И.Н., Вашетко Р.В. Клинико-морфологические особенности сосудистого русла гипертрофической рубцовой ткани в разные сроки ее формирования // Ортопедия, травматология и восстановит. хирургия дет. возраста. 2017. Т. 5, вып. 3. C. 25–35. DOI: 10.17816/PTORS5325-36
Ma J., Wang Q., Fei T., Han J.-D.J., Chen Y.-G. MCP-1 Mediates TGF-β-Induced Angiogenesis by Stimulating Vascular Smooth Muscle Cell Migration // Blood. 2007. Vol. 109. P. 987–994. DOI: 10.1182/blood-2006-07-036400
Wallace H.A., Basehore B.M., Zito P.M. Wound Healing Phases // StatPearls. Treasure Island: StatPearls Publishing, 2022. URL: https://www.ncbi.nlm.nih.gov/books/NBK470443/ (дата обращения: 15.11.2021).
Komi D.E.A., Khomtchouk K., Santa Maria P.L. A Review of the Contribution of Mast Cells in Wound Healing: Involved Molecular and Cellular Mechanisms // Clin. Rev. Allergy Immunol. 2020. Vol. 58, № 3. P. 298–312. DOI: 10.1007/s12016-019-08729-w
Ellis S., Lin E.J., Tartar D. Immunology of Wound Healing // Curr. Dermatol. Rep. 2018. Vol. 7, № 4. P. 350–358. DOI: 10.1007/s13671-018-0234-9
Dudas M., Wysocki A., Gelpi B., Tuan T.-L. Memory Encoded Throughout Our Bodies: Molecular and Cellular Basis of Tissue Regeneration // Pediatr. Res. 2008. Vol. 63, № 5. P. 502–512. DOI: 10.1203/PDR.0b013e31816a7453
Wipff P.-J., Rifkin D.B., Meister J.-J., Hinz B. Myofibroblast Contraction Activates Latent TGF-β1 from the Extracellular Matrix // J. Cell Biol. 2007. Vol. 179, № 6. P. 1311–1323. DOI: 10.1083/jcb.200704042
Yeung T., Georges P.C., Flanagan L.A., Marg B., Ortiz M., Funaki M., Zahir N., Ming W., Weaver V., Janmey P.A. Effects of Substrate Stiffness on Cell Morphology, Cytoskeletal Structure, and Adhesion // Cell Motil. Cytoskeleton. 2005. Vol. 60, № 1. P. 24–34.
Iglin V.A., Sokolovskaya O.A., Morozova S.M., Kuchur O.A., Nikonorova V.G., Sharsheeva A., Chrishtop V.V., Vinogradov A.V. Effect of Sol–Gel Alumina Biocomposite on the Viability and Morphology of Dermal Human Fibroblast Cells // ACS Biomater. Sci. Eng. 2020. Vol. 6, № 8. P. 4397–4400. DOI: 10.1021/acsbiomaterials.0c00721
Goffin J.M., Pittet P., Csucs G., Lussi J.W., Meister J.-J., Hinz B. Focal Adhesion Size Controls Tension- Dependent Recruitment of α-Smooth Muscle Actin to Stress Fibers // J. Cell Biol. 2006. Vol. 172, № 2. P. 259–268. DOI: 10.1083/jcb.200506179
Aarabi S., Bhatt K.A., Shi Y., Paterno J., Chang E.I., Loh S.A., Holmes J.W., Longaker M.T., Yee H., Gurtner G.C. Mechanical Load Initiates Hypertrophic Scar Formation Through Decreased Cellular Apoptosis // FASEB J. 2007. Vol. 21, № 12. P. 3250–3261.
Schultz S.S. Adult Stem Cell Application in Spinal Cord Injury // Curr. Drug Targets. 2005. Vol. 6, № 1. Р. 63–73. DOI: 10.2174/1389450053345046
Macri L., Silverstein D., Clark R.A.F. Growth Factor Binding to the Pericellular Matrix and Its Importance in Tissue Engineering // Adv. Drug Deliv. Rev. 2007. Vol. 59. P. 1366–1381. DOI: 10.1016/j.addr.2007.08.015
Lee H.J., Jang Y.J. Recent Understandings of Biology, Prophylaxis and Treatment Strategies for Hypertrophic Scars and Keloids // Int. J. Mol. Sci. 2018. Vol. 19, № 3. Art. № 711. DOI: 10.3390/ijms19030711
Kumar I., Staton C.A., Cross S.S., Reed M.W., Brown N.J. Angiogenesis, Vascular Endothelial Growth Factor and Its Receptors in Human Surgical Wounds // Br. J. Surg. 2009. Vol. 96, № 12. Р. 1484–1491. DOI: 10.1002/bjs.6778
McCarty M.F., Bielenberg D.R., Nilsson M.B., Gershenwald J.E., Barnhill R.L., Ahearne P., Bucana C.D., Fidler I.J. Epidermal Hyperplasia Overlying Human Melanoma Correlates with Tumour Depth and Angiogenesis // Melanoma Res. 2003. Vol. 13, № 4. Р. 379–387. DOI: 10.1097/00008390-200308000-00007
Shaw T.J., Martin P. Wound Repair at a Glance // J. Cell Sci. 2009. Vol. 122, pt. 18. P. 3209–3213. DOI: 10.1242/jcs.031187