Erythrocyte osmotic resistance in young women with low physical activity depending on the ACE gene I/D polymorphism

Authors

DOI:

https://doi.org/10.37482/2687-1491-Z109

Keywords:

erythrocyte osmotic resistance, haemolysis, erythrocyte populations, ACE gene I/D polymorphism, young women with low physical activity, factor analysis

Abstract

The purpose of this paper was to study erythrocyte osmotic resistance (EOR) and its relationship with the quantitative and morphofunctional parameters of red blood cells in young women with limited physical activity depending on the I/D polymorphism of the ACE gene. Materials and methods. The study involved 200 healthy women aged 18–22 years leading a sedentary lifestyle. Their blood samples were taken for genotyping and to determine the haemoglobin (HGB) level and red blood cell count (RBC), their mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) as well as haematocrit (HCT). EOR was studied by measuring the optical density of haemoglobin solutions after erythrocyte destruction in a series of hypotonic NaCl solutions with the concentration decreasing from 0.8 % to 0.1 %. Based on the results of osmotic haemolysis, erythrograms were produced and the NaCl concentrations were determined, at which 10, 50 and 90 % of the red blood cells were destroyed. Results. Carriers of the DD genotype were characterized by the lowest resistance to haemolysis in all three erythrocyte populations. According to the analysis of factor structures, in girls with the DD genotype only relationships between the total and individual parameters of erythrocytes were established. In carriers of the I allele (ID and II genotypes) the dominant factor combined the total red blood cell parameters (RBC, HGB, HCT) and the EOR of old, mature, and young erythrocytes. Thus, carriers of the I allele (ID and II genotypes) of the ACE gene are characterized by a higher resistance of mature and old cell populations than those of the DD genotype, while EOR variations in the former are interconnected with changes in the quantitative parameters of red blood cells. At the same time, an increase in EOR is combined with an increase in erythrocyte functional activity. DD genotype carriers showed no correlations between EOR and the quantitative and morphofunctional parameters of red blood cells.

Downloads

Download data is not yet available.

References

Lippi G., Sanchis-Gomar F. Epidemiological, Biological and Clinical Update on Exercise-Induced Hemolysis // Ann. Transl. Med. 2019. Vol. 12, № 7. Art. № 270. DOI: 10.21037/atm.2019.05.41

Chiu Y.-H., Lai J.-I., Wang S.-H., How C.-K., Li L.-H., Kao W.-F., Yang C.-C., Chen R.-J. Early Changes of the Anemia Phenomenon in Male 100-km Ultramarathoners // J. Chin. Med. Assoc. 2015. Vol. 78, № 2. P. 108–113. DOI: 10.1016/j.jcma.2014.09.004

Caulfield S., McDonald K.A., Dawson B., Stearne S.M., Green B.A., Rubenson J., Clemons T.D., Peeling P. A Comparison of Haemolytic Responses in Fore-Foot and Rear-Foot Distance Runners // J. Sports Sci. 2016. Vol. 34, № 15. P. 1485–1490. DOI: 10.1080/02640414.2015.1119300

Pickering C., Kiely J., Grgic J., Lucia A., Del Coso J. Can Genetic Testing Identify Talent for Sport? // Genes (Basel). 2019. Vol. 10, № 12. Art. № 972. DOI: 10.3390/genes10120972

Ahmetov I.I., Egorova E.S., Gabdrakhmanova L.J., Fedotovskaya O.N. Genes and Athletic Performance: An Update // Med. Sport Sci. 2016. Vol. 61. P. 41–54. DOI: 10.1159/000445240

Woods D.R., Humphries S.E., Montgomery H.E. The ACE I/D Polymorphism and Human Physical Performance // Trends Endocrinol. Metab. 2000. Vol. 11, № 10. P. 416–420. DOI: 10.1016/s1043-2760(00)00310-6

Tiret L., Rigat B., Visvikis S., Breda C., Corvol P., Cambien F., Soubrier F. Evidence, from Combined Segregation and Linkage Analysis, That a Variant of the Angiotensin I-Converting Enzyme (ACE) Gene Controls Plasma ACE Level // Am. J. Hum. Genet. 1992. Vol. 51, № 1. P. 197–205.

Sun C., Ponsonby A.-L., Carlin J.B., Bui M., Magnussen C.G., Burns T.L., Lehtimaki T., Wardrop N.H., Juonala M., Viikari J.S.A., Venn A.J., Raitakari O.T., Dwyer T. Childhood Adiposity, Adult Adiposity, and the ACE Gene Insertion/ Deletion Polymorphism: Evidence of Gene-Environment Interaction Effects on Adult Blood Pressure and Hypertension Status in Adulthood // J. Hypertens. 2018. Vol. 36, № 11. P. 2168–2176. DOI: 10.1097/HJH.0000000000001816

Strazzullo P., Iacone R., Iacoviello L., Russo O., Barba G., Russo P., D’Orazio A., Barbato A., Cappuccio F.P., Farinaro E., Siani A. Genetic Variation in the Renin–Angiotensin System and Abdominal Adiposity in Men: The Olivetti Prospective Heart Study // Ann. Intern. Med. 2003. Vol. 138, № 1. P. 17–23. DOI: 10.7326/0003-4819-138-1- 200301070-00007

Irvin M.R., Lynch A.I., Kabagambe E.K., Tiwari H.K., Barzilay J.I., Eckfeldt J.H., Boerwinkle E., Davis B.R., Ford C.E., Arnett D.K. Pharmacogenetic Association of Hypertension Candidate Genes with Fasting Glucose in the GenHAT Study // J. Hypertens. 2010. Vol. 28, № 10. P. 2076–2083. DOI: 10.1097/HJH.0b013e32833c7a4d

Vallejo M., Martínez-Palomino G., Ines-Real S., Pérez-Hernández N., Juárez-Rojas J.G., Vargas-Alarcón G. Relationship Between the Angiotensin I-Converting Enzyme Insertion/Deletion (I/D) Polymorphism and Cardiovascular Risk Factors in Healthy Young Mexican Women // Genet. Test. Mol. Biomarkers. 2009. Vol. 13, № 2. P. 237–242. DOI: 10.1089/gtmb.2008.0105

Даутова А.З., Хажиева Е.А., Садыкова Л.З., Шамратова В.Г. Морфофункциональные особенности эритроцитов у девушек в зависимости от уровня двигательной активности и наследственного фактора // Человек. Спорт. Медицина. 2020. Т. 20, № 3. С. 25–33. DOI: 10.14529/hsm200303

Голубева М.Г. Осмотическая резистентность эритроцитов, методы определения и коррекции, значение при различных патологиях // Успехи соврем. биологии. 2019. Т. 139, № 5. С. 446–456. DOI: 10.1134/ S004213241905003X

Mathew C.C. The Isolation of High Molecular Weight Eukaryotic DNA // Nucleic Acids. Methods in Molecular Biology / ed. by J.M. Walker. Vol. 2. Humana Press, 1984. P. 31–34.

Даутова А.З., Аюпова А.Р., Шамратова В.Г. Особенности функционирования газотранспортной системы и красной крови при разном уровне двигательной активности в зависимости от полиморфизма генов ACE и PPARG // Физ. культура, спорт – наука и практика. 2018. № 1. С. 101–106.

Sommerkamp H., Riegel K., Hilpert P., Brecht K. Über den Einfluβ der Kationenkonzentration im Erythrocyten auf die Lage der Sauerstoff-Dissoziationskurve des Blutes // Pflűgers Arch. 1961. Vol. 272, № 6. P. 591–601. DOI: 10.1007/BF00362240

De Mello W.C. Intracellular Angiotensin II as a Regulator of Muscle Tone in Vascular Resistance Vessels. Pathophysiological Implications // Peptides. 2016. Vol. 78. P. 87–90. DOI: 10.1016/j.peptides.2016.02.006

Канаева М.Л., Гальцева И.В., Накастоев И.М., Бальжанова Я.Б., Грибанова Е.О., Паровичникова Е.Н., Савченко В.Г. Ренин-ангиотензиновая система в регуляции гемопоэза // Онкогематология. 2017. Т. 12, № 4. С. 50–56. DOI: 10.17650/1818-8346-2017-12-4-50-56

Nazarov I.B., Woods D.R., Montgomery H.E., Shneider O.V., Kazakov V.I., Tomilin N.V., Rogozkin V.A. The Angiotensin Converting Enzyme I/D Polymorphism in Russian Athletes // Eur. J. Hum. Genet. 2001. Vol. 9, № 10. P. 797–801. DOI: 10.1038/sj.ejhg.5200711

Papadimitriou I.D., Papadopoulos C., Kouvatsi A., Triantaphyllidis C. The ACE I/D Polymorphism in Elite Greek Track and Field Athletes // J. Sports Med. Phys. Fitness. 2009. Vol. 49, № 4. P. 459–463.

References

Lippi G., Sanchis-Gomar F. Epidemiological, Biological and Clinical Update on Exercise-Induced Hemolysis. Ann. Transl. Med., 2019, vol. 12, no. 7. Art. no. 270. DOI: 10.21037/atm.2019.05.41

Chiu Y.-H., Lai J.-I., Wang S.-H., How C.-K., Li L.-H., Kao W.-F., Yang C.-C., Chen R.-J. Early Changes of the Anemia Phenomenon in Male 100-km Ultramarathoners. J. Chin. Med. Assoc., 2015, vol. 78, no. 2, pp. 108–113. DOI: 10.1016/j.jcma.2014.09.004

Caulfield S., McDonald K.A., Dawson B., Stearne S.M., Green B.A., Rubenson J., Clemons T.D., Peeling P. A Comparison of Haemolytic Responses in Fore-Foot and Rear-Foot Distance Runners. J. Sports Sci., 2016, vol. 34, no. 15, pp. 1485–1490. DOI: 10.1080/02640414.2015.1119300

Pickering C., Kiely J., Grgic J., Lucia A., Del Coso J. Can Genetic Testing Identify Talent for Sport? Genes (Basel), 2019, vol. 10, no. 12. Art. no. 972. DOI: 10.3390/genes10120972

Ahmetov I.I., Egorova E.S., Gabdrakhmanova L.J., Fedotovskaya O.N. Genes and Athletic Performance: An Update. Med. Sport Sci., 2016, vol. 61, pp. 41–54. DOI: 10.1159/000445240

Woods D.R., Humphries S.E., Montgomery H.E. The ACE I/D Polymorphism and Human Physical Performance. Trends Endocrinol. Metab., 2000, vol. 11, no. 10, pp. 416–420. DOI: 10.1016/s1043-2760(00)00310-6

Tiret L., Rigat B., Visvikis S., Breda C., Corvol P., Cambien F., Soubrier F. Evidence, from Combined Segregation and Linkage Analysis, That a Variant of the Angiotensin I-Converting Enzyme (ACE) Gene Controls Plasma ACE Level. Am. J. Hum. Genet., 1992, vol. 51, no. 1, pp. 197–205.

Sun C., Ponsonby A.-L., Carlin J.B., Bui M., Magnussen C.G., Burns T.L., Lehtimaki T., Wardrop N.H., Juonala M., Viikari J.S.A., Venn A.J., Raitakari O.T., Dwyer T. Childhood Adiposity, Adult Adiposity, and the ACE Gene Insertion/Deletion Polymorphism: Evidence of Gene–Environment Interaction Effects on Adult Blood Pressure and Hypertension Status in Adulthood. J. Hypertens., 2018, vol. 36, no. 11, pp. 2168–2176. DOI: 10.1097/ HJH.0000000000001816

Strazzullo P., Iacone R., Iacoviello L., Russo O., Barba G., Russo P., D’Orazio A., Barbato A., Cappuccio F.P., Farinaro E., Siani A. Genetic Variation in the Renin–Angiotensin System and Abdominal Adiposity in Men: The Olivetti Prospective Heart Study. Ann. Intern. Med., 2003, vol. 138, no. 1, pp. 17–23. DOI: 10.7326/0003-4819-138- 1-200301070-00007

Irvin M.R., Lynch A.I., Kabagambe E.K., Tiwari H.K., Barzilay J.I., Eckfeldt J.H., Boerwinkle E., Davis B.R., Ford C.E., Arnett D.K. Pharmacogenetic Association of Hypertension Candidate Genes with Fasting Glucose in the GenHAT Study. J. Hypertens., 2010, vol. 28, no. 10, pp. 2076–2083. DOI: 10.1097/HJH.0b013e32833c7a4d

Vallejo M., Martínez-Palomino G., Ines-Real S., Pérez-Hernández N., Juárez-Rojas J.G., Vargas-Alarcón G. Relationship Between the Angiotensin I-Converting Enzyme Insertion/Deletion (I/D) Polymorphism and Cardiovascular Risk Factors in Healthy Young Mexican Women. Genet. Test. Mol. Biomarkers, 2009, vol. 13, no. 2, pp. 237–242. DOI: 10.1089/gtmb.2008.0105

Dautova A.Z., Hazhieva E.A., Sadykova L.Z., Shamratova V.G. Morphofunctional Features of Erythrocytes in Young Women Depending on the Level of Motor Activity and Hereditary Factor. Hum. Sport Med., 2020, vol. 20, no. 3, pp. 25–33 (in Russ.). DOI: 10.14529/hsm200303

Golubeva M.G. Osmoticheskaya rezistentnost’ eritrotsitov, metody opredeleniya i korrektsii, znachenie pri razlichnykh patologiyakh [Osmotic Resistance of Erythrocytes, Methods of Determination and Correction, Value at Different Pathologies]. Uspekhi sovremennoy biologii, 2019, vol. 139, no. 5, pp. 446–456. DOI: 10.1134/ S004213241905003X

Mathew C.C. The Isolation of High Molecular Weight Eukaryotic DNA. Walker J.M. (ed.). Nucleic Acids. Methods in Molecular Biology. Vol. 2. Humana Press, 1984, pp. 31–34.

Dautova A.Z., Ayupova A.R., Shamratova V.G. Osobennosti funktsionirovaniya gazotransportnoy sistemy i krasnoy krovi pri raznom urovne dvigatel’noy aktivnosti v zavisimosti ot polimorfizma genov ACE i PPARG [Functioning Features of the Gas Transport System and the Red Blood at Different Levels of Motor Activity Depending on the Polymorphism of the ACE and PPARG Genes]. Fizicheskaya kul’tura, sport – nauka i praktika, 2018, no. 1, pp. 101–106 (in Russ.).

Sommerkamp H., Riegel K., Hilpert P., Brecht K. Über den Einfluβ der Kationenkonzentration im Erythrocyten auf die Lage der Sauerstoff-Dissoziationskurve des Blutes. Pflűgers Arch., 1961, vol. 272, no. 6, pp. 591–601. DOI: 10.1007/BF00362240

De Mello W.C. Intracellular Angiotensin II as a Regulator of Muscle Tone in Vascular Resistance Vessels. Pathophysiological Implications. Peptides, 2016, vol. 78, pp. 87–90. DOI: 10.1016/j.peptides.2016.02.006

Kanaeva M.L., Gal’tseva I.V., Nakastoev I.M., Bal’zhanova Ya.B., Gribanova E.O., Parovichnikova E.N., Savchenko V.G. Renin-angiotenzinovaya sistema v regulyatsii gemopoeza [Renin-Angiotensin System in Regulation of Hematopoiesis]. Onkogematologiya, 2017, vol. 12, no. 4, pp. 50–56. DOI: 10.17650/1818-8346-2017-12-4-50-56

Nazarov I.B., Woods D.R., Montgomery H.E., Shneider O.V., Kazakov V.I., Tomilin N.V., Rogozkin V.A. The Angiotensin Converting Enzyme I/D Polymorphism in Russian Athletes. Eur. J. Hum. Genet., 2001, vol. 9, no. 10, pp. 797–801. DOI: 10.1038/sj.ejhg.5200711

Papadimitriou I.D., Papadopoulos C., Kouvatsi A., Triantaphyllidis C. The ACE I/D Polymorphism in Elite Greek Track and Field Athletes. J. Sports Med. Phys. Fitness, 2009, vol. 49, no. 4, pp. 459–463.

Published

2022-10-19

How to Cite

Khabibullina И. ., Dautova А. ., Shamratova В. ., & Gorbunova В. . (2022). Erythrocyte osmotic resistance in young women with low physical activity depending on the ACE gene I/D polymorphism. Journal of Medical and Biological Research, 10(3), 201–212. https://doi.org/10.37482/2687-1491-Z109