The Role of Urine Biomarkers in Diagnosing Pulmonary Tuberculosis (Review)

Authors

DOI:

https://doi.org/10.37482/2687-1491-Z138

Keywords:

metabolomic analysis, MALDI-TOF mass spectrometry, tuberculosis diagnosis, predictors of TB treatment effectiveness, IP-10, transrenal DNA, urine biomarkers

Abstract

Diagnosis of tuberculosis (TB) based on sputum analysis has limitations for certain categories of patients (older adults, children, and people living with HIV). An alternative approach is a non-invasive urine-based method, which provides a large sample volume and a quick result. We searched for English-language publications from 2010 to 2021 in PubMed and Cochrane databases using the terms tuberculosis + urine + biomarkers. Papers on urine lipoarabinomannan testing were excluded as this topic has been sufficiently studied elsewhere. The reviewed publications cover more than 30 urine biomarkers used to diagnose TB and evaluate treatment effectiveness. Urine transrenal DNA extraction continues to be investigated, although its diagnostic sensitivity and specificity depend on the extraction method and patient’s HIV status. IP-10 is likely to be a non-specific inflammatory marker; however, its level correlates with TB/HIV status and may be useful for assessing TB treatment response. Further, the article shows the potential of metabolomic biomarkers and biosignatures for measuring the activity of TB infection and distinguishing it from other respiratory diseases. The number of reliable biomarkers predicting TB treatment outcomes is limited. Numerous untargeted studies have used mass spectrometry to detect metabolomic and proteomic biomarkers in urine. The publications are heterogeneous in design and methods; few studies have analysed the specificity and sensitivity of the diagnostic methods covered. In future, a combination of host and pathogen biomarkers could increase the sensitivity and specificity of TB diagnosis.

Downloads

Download data is not yet available.

Author Biography

Popova Yulia Alekseevna, Northern State Medical University

Ординатор 1 года, Факультет подготовки кадров высшей квалификации, кафедра Клинической биохимии, микробиологии и лабораторной диагностики, специальность Клиническая лабораторная диагностика

References

Global Tuberculosis Report 2021 / World Health Organization. Geneva, 2021. 57 p.

Drobniewski F., Nikolayevskyy V., Maxeiner H., Balabanova Y., Casali N., Kontsevaya I., Ignatyeva O. Rapid Diagnostics of Tuberculosis and Drug Resistance in the Industrialized World: Clinical and Public Health Benefits and Barriers to Implementation // BMC Med. 2013. Vol. 11. Art. № 190. DOI: 10.1186/1741-7015-11-190

High Priority Target Product Profiles for New Tuberculosis Diagnostics: Report of a Consensus Meeting / World Health Organization. Geneva, 28–29 April 2014. 96 p. URL: https://apps.who.int/iris/handle/10665/135617 (дата обращения: 06.04.2022).

Lateral Flow Urine Lipoarabinomannan Assay (LF-LAM) for the Diagnosis of Active Tuberculosis in People Living with HIV. Policy Update 2019 / World Health Organization. Geneva, 2019. 44 p.

Fernández-Carballo B.L., Broger T., Wyss R., Banaei N., Denkinger C.M. Toward the Development of a Circulating Free DNA-Based in vitro Diagnostic Test for Infectious Diseases: А Review of Evidence for Tuberculosis // J. Clin. Microbiol. 2019. Vol. 57, № 4. Art. № e01234-18. DOI: 10.1128/JCM.01234-18

Oreskovic A., Brault N.D., Panpradist N., Lai J.J., Lutz B.R. Analytical Comparison of Methods for Extraction of Short Cell-Free DNA from Urine // J. Mol. Diagn. 2019. Vol. 21, № 6. P. 1067–1078. DOI: 10.1016/j.jmoldx.2019.07.002

Patel K., Nagel M., Wesolowski M., Dees S., Rivera-Milla E., Geldmacher C., Dheda K., Hoelscher M., Labugger I. Evaluation of a Urine-Based Rapid Molecular Diagnostic Test with Potential to Be Used at Point-of-Care for Pulmonary Tuberculosis: Cape Town Cohort // J. Mol. Diagn. 2018. Vol. 20, № 2. P. 215–224. DOI: 10.1016/j.jmoldx.2017.11.005

Bordelon H., Russ P.K., Wright D.W., Haselton F.R. A Magnetic Bead-Based Method for Concentrating DNA from Human Urine for Downstream Detection // PLoS One. 2013. Vol. 8, № 7. Art. № e68369. DOI: 10.1371/journal.pone.0068369

Bordelon H., Ricks K.M., Pask M.E., Russ P.K., Solinas F., Baglia M.L., Short P.A., Nel A., Blackburn J., Dheda K., Zamudio C., Cáceres T., Wright D.W., Haselton F.R., Pettit A.C. Design and Use of Mouse Control DNA for DNA Biomarker Extraction and PCR Detection from Urine: Application for Transrenal Mycobacterium tuberculosis DNA Detection // J. Microbiol. Methods. 2017. Vol. 136. P. 65–70. DOI: 10.1016/j.mimet.2017.02.010

Oreskovic A., Panpradist N., Marangu D., Ngwane M.W., Magcaba Z.P., Ngcobo S., Ngcobo Z., Horne D.J., Wilson D.P.K., Shapiro A.E., Drain P.K., Lutz B.R. Diagnosing Pulmonary Tuberculosis by Using Sequence-Specific Purification of Urine Cell-Free DNA // J. Clin. Microbiol. 2021. Vol. 59, № 8. Art. № e0007421. DOI: 10.1128/JCM.00074-21

Oreskovic A., Waalkes A., Holmes E.A., Rosenthal C.A., Wilson D.P.K., Shapiro A.E., Drain P.K., Lutz B.R., Salipante S.J. Characterizing the Molecular Composition and Diagnostic Potential of Mycobacterium tuberculosis Urinary Cell-Free DNA Using Next-Generation Sequencing // Int. J. Infect. Dis. 2021. Vol. 112. P. 330–337. DOI: 10.1016/j.ijid.2021.09.042

Sinkov V.V., Ogarkov O.B., Plotnikov A.O., Gogoleva N.E., Zhdanova S.N., Pervanchuk V.L., Belkova N.L., Koshcheev M.E., Thomas T.A., Liu J., Zorkaltseva E.Y., Heysell S.K. Metagenomic Analysis of Mycobacterial Transrenal DNA in Patients with HIV and Tuberculosis Coinfection // Infect. Genet. Evol. 2020. Vol. 77. Art. № 104057. DOI: 10.1016/j.meegid.2019.104057

Hayney M.S., Henriquez K.M., Barnet J.H., Ewers T., Champion H.M., Flannery S., Barrett B. Serum IFN-γ-Induced Protein 10 (IP-10) as a Biomarker for Severity of Acute Respiratory Infection in Healthy Adults // J. Clin. Virol. 2017. Vol. 90. P. 32–37. DOI: 10.1016/j.jcv.2017.03.003

Kim S.Y., Kim J., Kim D.R., Kang Y.A., Bong S., Lee J., Kim S., Lee N.S., Sim B., Cho S.N., Kim Y.S., Lee H. Urine IP-10 as a Biomarker of Therapeutic Response in Patients with Active Pulmonary Tuberculosis // BMC Infect. Dis. 2018. Vol. 18, № 1. Art. № 240. DOI: 10.1186/s12879-018-3144-3

Petrone L., Cannas A., Vanini V., Cuzzi G., Aloi F., Nsubuga M., Sserunkuma J., Nazziwa R.A., Jugheli L., Lukindo T., Girardi E., Antinori A., Pucci L., Reither K., Goletti D. Blood and Urine Inducible Protein 10 as Potential Markers of Disease Activity // Int. J. Tuberc. Lung Dis. 2016. Vol. 20, № 11. P. 1554–1561. DOI: 10.5588/ijtld.16.0342

Petrone L., Cannas A., Aloi F., Nsubuga M., Sserumkuma J., Nazziwa R.A., Jugheli L., Lukindo T., Girardi E., Reither K., Goletti D. Blood or Urine IP-10 Can Not Discriminate Between Active Tuberculosis and Respiratory Diseases Different from Tuberculosis in Children // Biomed. Res. Int. 2015. Vol. 2015. Art. № 589471. DOI: 10.1155/2015/589471

Cannas A., Calvo L., Chiacchio T., Cuzzi G., Vanini V., Lauria F.N., Pucci L., Girardi E., Goletti D. IP-10 Detection in Urine Is Associated with Lung Diseases // BMC Infect. Dis. 2010. Vol. 10. Art. № 333. DOI: 10.1186/1471-2334-10-333

Fortún J., Martín-Dávila P., Gómez-Mampaso E., González-García A., Barbolla I., Gómez-García I., Wikman P., Ortíz J., Navas E., Cuartero C., Gijón D., Moreno S. Extra-Pulmonary Tuberculosis: Differential Aspects and Role of 16S-rRNA in Urine // Int. J. Tuberc. Lung Dis. 2014. Vol. 18, № 4. P. 478–485. DOI: 10.5588/ijtld.13.0555

Cubero N., Esteban J., Palenque E., Rosell A., Garcia M.J. Evaluation of the Detection of Mycobacterium tuberculosis with Metabolic Activity in Culture-Negative Human Clinical Samples // Clin. Microbiol. Infect. 2013. Vol. 19, № 3. P. 273–278. DOI: 10.1111/j.1469-0691.2012.03779.x

Isa F., Collins S., Lee M.H., Decome D., Dorvil N., Joseph P., Smith L., Salerno S., Wells M.T., Fischer S., Bean J.M., Pape J.W., Johnson W.D., Fitzgerald D.W., Rhee K.Y. Mass Spectrometric Identification of Urinary Biomarkers of Pulmonary Tuberculosis // EBioMedicine. 2018. Vol. 31. P. 157–165. DOI: 10.1016/j.ebiom.2018.04.014

Deng J., Liu L., Yang Q., Wei C., Zhang H., Xin H., Pan S., Liu Z., Wang D., Liu B., Gao L., Liu R., Pang Y., Chen X., Zheng J., Jin Q. Urinary Metabolomic Analysis to Identify Potential Markers for the Diagnosis of Tuberculosis and Latent Tuberculosis // Arch. Biochem. Biophys. 2021. Vol. 704. Art. № 108876. DOI: 10.1016/j.abb.2021.108876

Liu L., Deng J., Yang Q., Wei C., Liu B., Zhang H., Xin H., Pan S., Liu Z., Wang D., Pang Y., Chen X., Gao L., Zheng J., Liu R., Jin Q. Urinary Proteomic Analysis to Identify a Potential Protein Biomarker Panel for the Diagnosis of Tuberculosis // IUBMB Life. 2021. Vol. 73, № 8. P. 1073–1083. DOI: 10.1002/iub.2509

Dang N.A., Janssen H.-G., Kolk A.H. Rapid Diagnosis of TB Using GC-MS and Chemometrics // Bioanalysis. 2013. Vol. 5, № 24. P. 3079–3097. DOI: 10.4155/bio.13.288

Sandlund J., Lim S., Queralto N., Huang R., Yun J., Taba B., Song R., Odero R., Ouma G., Sitati R., Murithi W., Cain K.P., Banaei N. Development of Colorimetric Sensor Array for Diagnosis of Tuberculosis Through Detection of Urinary Volatile Organic Compounds // Diagn. Microbiol. Infect. Dis. 2018. Vol. 92, № 4. P. 299–304. DOI: 10.1016/j.diagmicrobio.2018.06.014

Russell T.M., Green L.S., Rice T., Kruh-Garcia N.A., Dobos K., De Groote M.A., Hraha T., Sterling D.G., Janjic N., Ochsner U.A. Potential of High-Affinity, Slow Off-Rate Modified Aptamer Reagents for Mycobacterium tuberculosis Proteins as Tools for Infection Models and Diagnostic Applications // J. Clin. Microbiol. 2017. Vol. 55, № 10. P. 3072–3088. DOI: 10.1128/JCM.00469-17

Pollock N.R., Macovei L., Kanunfre K., Dhiman R., Restrepo B.I., Zarate I., Pino P.A., Mora-Guzman F., Fujiwara R.T., Michel G., Kashino S.S., Campos-Neto A. Validation of Mycobacterium tuberculosis Rv1681 Protein as a Diagnostic Marker of Active Pulmonary Tuberculosis // J. Clin. Microbiol. 2013. Vol. 51, № 5. P. 1367–1373. DOI: 10.1128/JCM.03192-12

Kim S.H., Lee N.-E., Lee J.S., Shin J.H., Lee J.Y., Ko J.-H., Chang C.L., Kim Y.-S. Identification of Mycobacterial Antigens in Human Urine by Use of Immunoglobulin G Isolated from Sera of Patients with Active Pulmonary Tuberculosis // J. Clin. Microbiol. 2016. Vol. 54, № 6. P. 1631–1637. DOI: 10.1128/JCM.00236-16

Eribo O.A., Leqheka M.S., Malherbe S.T., McAnda S., Stanley K., van der Spuy G.D., Walzl G., Chegou N.N. Host Urine Immunological Biomarkers as Potential Candidates for the Diagnosis of Tuberculosis // Int. J. Infect. Dis. 2020. Vol. 99. P. 473–481. DOI: 10.1016/j.ijid.2020.08.019

Das M.K., Bishwal S.C., Das A., Dabral D., Badireddy V.K., Pandit B., Varghese G.M., Nanda R.K. Deregulated Tyrosine-Phenylalanine Metabolism in Pulmonary Tuberculosis Patients // J. Proteome Res. 2015. Vol. 14, № 4. P. 1947–1956. DOI: 10.1021/acs.jproteome.5b00016

Fitzgerald B.L., Mahapatra S., Farmer D.K., McNeil M.R., Casero R.A. Jr., Belisle J.T. Elucidating the Structure of N1-Acetylisoputreanine: A Novel Polyamine Catabolite in Human Urine // ACS Omega. 2017. Vol. 2, № 7. P. 3921–3930. DOI: 10.1021/acsomega.7b00872

Xia Q., Lee M.H., Rhee K., Isa F. 1886. N1, N12-Diacetylspermine as Potential Urinary Biomarker to Monitor Treatment Response and Bacterial Load in Pulmonary Tuberculosis // Open Forum Infect. Dis. 2019. Vol. 6, suppl. 2. Art. № S53. DOI: 10.1093/ofid/ofz359.116

Xia Q., Lee M.H., Walsh K.F., McAulay K., Bean J.M., Fitzgerald D.W., Dupnik K.M., Johnson W.D., Pape J.W., Rhee K.Y., Isa F. Urinary Biomarkers of Mycobacterial Load and Treatment Response in Pulmonary Tuberculosis // JCI Insight. 2020. Vol. 5, № 18. Art. № e136301. DOI: 10.1172/jci.insight.136301

Fitzgerald B.L., Islam M.N., Graham B., Mahapatra S., Webb K., Boom W.H., Malherbe S.T., Joloba M.L., Johnson J.L., Winter J., Walzl G., Belisle J.T. Correction to “Elucidation of a Novel Human Urine Metabolite as a Seryl-Leucine Glycopeptide and as a Biomarker of Effective Anti-Tuberculosis Therapy” // ACS Infect. Dis. 2019. Vol. 5, № 6. P. 1042–1043. DOI: 10.1021/acsinfecdis.9b00068

Combrink M., du Preez I., Ronacher K., Walzl G., Loots D.T. Time-Dependent Changes in Urinary Metabolome Before and After Intensive Phase Tuberculosis Therapy: A Pharmacometabolomics Study // OMICS. 2019. Vol. 23, № 11. P. 560–572. DOI: 10.1089/omi.2019.0140

Mahapatra S., Hess A.M., Johnson J.L., Eisenach K.D., DeGroote M.A., Gitta P., Joloba M.L., Kaplan G., Walzl G., Boom W.H., Belisle J.T. A Metabolic Biosignature of Early Response to Anti-Tuberculosis Treatment // BMC Infect. Dis. 2014. Vol. 14. Art. № 53. DOI: 10.1186/1471-2334-14-53

Luies L., van Reenen M., Ronacher K., Walzl G., Loots D.T. Predicting Tuberculosis Treatment Outcome Using Metabolomics // Biomark. Med. 2017. Vol. 11, № 12. P. 1057–1067. DOI: 10.2217/bmm-2017-0133

References

Global Tuberculosis Report 2021. World Health Organization. Geneva, 2021. 57 p.

Drobniewski F., Nikolayevskyy V., Maxeiner H., Balabanova Y., Casali N., Kontsevaya I., Ignatyeva O. Rapid Diagnostics of Tuberculosis and Drug Resistance in the Industrialized World: Clinical and Public Health Benefits and Barriers to Implementation. BMC Med., 2013, vol. 11. Art. no. 190. DOI: 10.1186/1741-7015-11-190

High Priority Target Product Profiles for New Tuberculosis Diagnostics: Report of a Consensus Meeting. World Health Organization. Geneva, 28–29 April 2014. 96 p. Available at: https://apps.who.int/iris/handle/10665/135617 (accessed: 6 April 2022).

Lateral Flow Urine Lipoarabinomannan Assay (LF-LAM) for the Diagnosis of Active Tuberculosis in People Living with HIV. Policy Update 2019. World Health Organization. Geneva, 2019. 44 p.

Fernández-Carballo B.L., Broger T., Wyss R., Banaei N., Denkinger C.M. Toward the Development of a Circulating Free DNA-Based in vitro Diagnostic Test for Infectious Diseases: A Review of Evidence for Tuberculosis. J. Clin. Microbiol., 2019, vol. 57, no. 4. Art. no. e01234-18. DOI: 10.1128/JCM.01234-18

Oreskovic A., Brault N.D., Panpradist N., Lai J.J., Lutz B.R. Analytical Comparison of Methods for Extraction of Short Cell-Free DNA from Urine. J. Mol. Diagn., 2019, vol. 21, no. 6, pp. 1067–1078. DOI: 10.1016/j.jmoldx.2019.07.002

Patel K., Nagel M., Wesolowski M., Dees S., Rivera-Milla E., Geldmacher C., Dheda K., Hoelscher M., Labugger I. Evaluation of a Urine-Based Rapid Molecular Diagnostic Test with Potential to Be Used at Point-of-Care for Pulmonary Tuberculosis: Cape Town Cohort. J. Mol. Diagn., 2018, vol. 20, no. 2, pp. 215–224. DOI: 10.1016/j.jmoldx.2017.11.005

Bordelon H., Russ P.K., Wright D.W., Haselton F.R. A Magnetic Bead-Based Method for Concentrating DNA from Human Urine for Downstream Detection. PLoS One, 2013, vol. 8, no. 7. Art. no. e68369. DOI: 10.1371/journal.pone.0068369

Bordelon H., Ricks K.M., Pask M.E., Russ P.K., Solinas F., Baglia M.L., Short P.A., Nel A., Blackburn J., Dheda K., Zamudio C., Cáceres T., Wright D.W., Haselton F.R., Pettit A.C. Design and Use of Mouse Control DNA for DNA Biomarker Extraction and PCR Detection from Urine: Application for Transrenal Mycobacterium tuberculosis DNA Detection. J. Microbiol. Methods, 2017, vol. 136, pp. 65–70. DOI: 10.1016/j.mimet.2017.02.010

Oreskovic A., Panpradist N., Marangu D., Ngwane M.W., Magcaba Z.P., Ngcobo S., Ngcobo Z., Horne D.J., Wilson D.P.K., Shapiro A.E., Drain P.K., Lutz B.R. Diagnosing Pulmonary Tuberculosis by Using Sequence-Specific Purification of Urine Cell-Free DNA. J. Clin. Microbiol., 2021, vol. 59, no. 8. Art. no. e0007421. DOI: 10.1128/JCM.00074-21

Oreskovic A., Waalkes A., Holmes E.A., Rosenthal C.A., Wilson D.P.K., Shapiro A.E., Drain P.K., Lutz B.R., Salipante S.J. Characterizing the Molecular Composition and Diagnostic Potential of Mycobacterium tuberculosis Urinary Cell-Free DNA Using Next-Generation Sequencing. Int. J. Infect. Dis., 2021, vol. 112, pp. 330–337. DOI: 10.1016/j.ijid.2021.09.042

Sinkov V.V., Ogarkov O.B., Plotnikov A.O., Gogoleva N.E., Zhdanova S.N., Pervanchuk V.L., Belkova N.L., Koshcheev M.E., Thomas T.A., Liu J., Zorkaltseva E.Y., Heysell S.K. Metagenomic Analysis of Mycobacterial Transrenal DNA in Patients with HIV and Tuberculosis Coinfection. Infect. Genet. Evol., 2020, vol. 77. Art. no. 104057. DOI: 10.1016/j.meegid.2019.104057

Hayney M.S., Henriquez K.M., Barnet J.H., Ewers T., Champion H.M., Flannery S., Barrett B. Serum IFN-γ-Induced Protein 10 (IP-10) as a Biomarker for Severity of Acute Respiratory Infection in Healthy Adults. J. Clin. Virol., 2017, vol. 90, pp. 32–37. DOI: 10.1016/j.jcv.2017.03.003

Kim S.Y., Kim J., Kim D.R., Kang Y.A., Bong S., Lee J., Kim S., Lee N.S., Sim B., Cho S.N., Kim Y.S., Lee H. Urine IP-10 as a Biomarker of Therapeutic Response in Patients with Active Pulmonary Tuberculosis. BMC Infect. Dis., 2018, vol. 18, no. 1. Art. no. 240. DOI: 10.1186/s12879-018-3144-3

Petrone L., Cannas A., Vanini V., Cuzzi G., Aloi F., Nsubuga M., Sserunkuma J., Nazziwa R.A., Jugheli L., Lukindo T., Girardi E., Antinori A., Pucci L., Reither K., Goletti D. Blood and Urine Inducible Protein 10 as Potential Markers of Disease Activity. Int. J. Tuberc. Lung Dis., 2016, vol. 20, no. 11, pp. 1554–1561. DOI: 10.5588/ijtld.16.0342

Petrone L., Cannas A., Aloi F., Nsubuga M., Sserumkuma J., Nazziwa R.A., Jugheli L., Lukindo T., Girardi E., Reither K., Goletti D. Blood or Urine IP-10 Can Not Discriminate Between Active Tuberculosis and Respiratory Diseases Different from Tuberculosis in Children. Biomed. Res. Int., 2015, vol. 2015. Art. no. 589471. DOI: 10.1155/2015/589471

Cannas A., Calvo L., Chiacchio T., Cuzzi G., Vanini V., Lauria F.N., Pucci L., Girardi E., Goletti D. IP-10 Detection in Urine Is Associated with Lung Diseases. BMC Infect. Dis., 2010, vol. 10. Art. no. 333. DOI: 10.1186/1471-2334-10-333

Fortún J., Martín-Dávila P., Gómez-Mampaso E., González-García A., Barbolla I., Gómez-García I., Wikman P., Ortíz J., Navas E., Cuartero C., Gijón D., Moreno S. Extra-Pulmonary Tuberculosis: Differential Aspects and Role of 16S-rRNA in Urine. Int. J. Tuberc. Lung Dis., 2014, vol. 18, no. 4, pp. 478–485. DOI: 10.5588/ijtld.13.0555

Cubero N., Esteban J., Palenque E., Rosell A., Garcia M.J. Evaluation of the Detection of Mycobacterium tuberculosis with Metabolic Activity in Culture-Negative Human Clinical Samples. Clin. Microbiol. Infect., 2013, vol. 19, no. 3, pp. 273–278. DOI: 10.1111/j.1469-0691.2012.03779.x

Isa F., Collins S., Lee M.H., Decome D., Dorvil N., Joseph P., Smith L., Salerno S., Wells M.T., Fischer S., Bean J.M., Pape J.W., Johnson W.D., Fitzgerald D.W., Rhee K.Y. Mass Spectrometric Identification of Urinary Biomarkers of Pulmonary Tuberculosis. EBioMedicine, 2018, vol. 31, pp. 157–165. DOI: 10.1016/j.ebiom.2018.04.014

Deng J., Liu L., Yang Q., Wei C., Zhang H., Xin H., Pan S., Liu Z., Wang D., Liu B., Gao L., Liu R., Pang Y., Chen X., Zheng J., Jin Q. Urinary Metabolomic Analysis to Identify Potential Markers for the Diagnosis of Tuberculosis and Latent Tuberculosis. Arch. Biochem. Biophys., 2021, vol. 704. Art. no. 108876. DOI: 10.1016/j.abb.2021.108876

Liu L., Deng J., Yang Q., Wei C., Liu B., Zhang H., Xin H., Pan S., Liu Z., Wang D., Pang Y., Chen X., Gao L., Zheng J., Liu R., Jin Q. Urinary Proteomic Analysis to Identify a Potential Protein Biomarker Panel for the Diagnosis of Tuberculosis. IUBMB Life, 2021, vol. 73, no. 8, pp. 1073–1083. DOI: 10.1002/iub.2509

Dang N.A., Janssen H.-G., Kolk A.H. Rapid Diagnosis of TB Using GC-MS and Chemometrics. Bioanalysis, 2013, vol. 5, no. 24, pp. 3079–3097. DOI: 10.4155/bio.13.288

Sandlund J., Lim S., Queralto N., Huang R., Yun J., Taba B., Song R., Odero R., Ouma G., Sitati R., Murithi W., Cain K.P., Banaei N. Development of Colorimetric Sensor Array for Diagnosis of Tuberculosis Through Detection of Urinary Volatile Organic Compounds. Diagn. Microbiol. Infect. Dis., 2018, vol. 92, no. 4, pp. 299–304. DOI: 10.1016/j.diagmicrobio.2018.06.014

Russell T.M., Green L.S., Rice T., Kruh-Garcia N.A., Dobos K., De Groote M.A., Hraha T., Sterling D.G., Janjic N., Ochsner U.A. Potential of High-Affinity, Slow Off-Rate Modified Aptamer Reagents for Mycobacterium tuberculosis Proteins as Tools for Infection Models and Diagnostic Applications. J. Clin. Microbiol., 2017, vol. 55, no. 10, pp. 3072–3088. DOI: 10.1128/JCM.00469-17

Pollock N.R., Macovei L., Kanunfre K., Dhiman R., Restrepo B.I., Zarate I., Pino P.A., Mora-Guzman F., Fujiwara R.T., Michel G., Kashino S.S., Campos-Neto A. Validation of Mycobacterium tuberculosis Rv1681 Protein as a Diagnostic Marker of Active Pulmonary Tuberculosis. J. Clin. Microbiol., 2013, vol. 51, no. 5, pp. 1367–1373. DOI: 10.1128/JCM.03192-12

Kim S.H., Lee N.-E., Lee J.S., Shin J.H., Lee J.Y., Ko J.-H., Chang C.L., Kim Y.-S. Identification of Mycobacterial Antigens in Human Urine by Use of Immunoglobulin G Isolated from Sera of Patients with Active Pulmonary Tuberculosis. J. Clin. Microbiol., 2016, vol. 54, no. 6, pp. 1631–1637. DOI: 10.1128/JCM.00236-16

Eribo O.A., Leqheka M.S., Malherbe S.T., McAnda S., Stanley K., van der Spuy G.D., Walzl G., Chegou N.N. Host Urine Immunological Biomarkers as Potential Candidates for the Diagnosis of Tuberculosis. Int. J. Infect. Dis., 2020, vol. 99, pp. 473–481. DOI: 10.1016/j.ijid.2020.08.019

Das M.K., Bishwal S.C., Das A., Dabral D., Badireddy V.K., Pandit B., Varghese G.M., Nanda R.K. Deregulated Tyrosine-Phenylalanine Metabolism in Pulmonary Tuberculosis Patients. J. Proteome Res., 2015, vol. 14, no. 4, pp. 1947–1956. DOI: 10.1021/acs.jproteome.5b00016

Fitzgerald B.L., Mahapatra S., Farmer D.K., McNeil M.R., Casero R.A. Jr., Belisle J.T. Elucidating the Structure of N1-Acetylisoputreanine: A Novel Polyamine Catabolite in Human Urine. ACS Omega, 2017, vol. 2, no. 7, pp. 3921–3930. DOI: 10.1021/acsomega.7b00872

Xia Q., Lee M.H., Rhee K., Isa F. 1886. N1, N12-Diacetylspermine as Potential Urinary Biomarker to Monitor Treatment Response and Bacterial Load in Pulmonary Tuberculosis. Open Forum Infect. Dis., 2019, vol. 6, suppl. 2. Art. no. S53. DOI: 10.1093/ofid/ofz359.116

Xia Q., Lee M.H., Walsh K.F., McAulay K., Bean J.M., Fitzgerald D.W., Dupnik K.M., Johnson W.D., Pape J.W., Rhee K.Y., Isa F. Urinary Biomarkers of Mycobacterial Load and Treatment Response in Pulmonary Tuberculosis. JCI Insight, 2020, vol. 5, no. 18. Art. no. e136301. DOI: 10.1172/jci.insight.136301

Fitzgerald B.L., Islam M.N., Graham B., Mahapatra S., Webb K., Boom W.H., Malherbe S.T., Joloba M.L., Johnson J.L., Winter J., Walzl G., Belisle J.T. Correction to “Elucidation of a Novel Human Urine Metabolite as a Seryl-Leucine Glycopeptide and as a Biomarker of Effective Anti-Tuberculosis Therapy”. ACS Infect. Dis., 2019, vol. 5, no. 6, pp. 1042–1043. DOI: 10.1021/acsinfecdis.9b00068

Combrink M., du Preez I., Ronacher K., Walzl G., Loots D.T. Time-Dependent Changes in Urinary Metabolome Before and After Intensive Phase Tuberculosis Therapy: A Pharmacometabolomics Study. OMICS, 2019, vol. 23, no. 11, pp. 560–572. DOI: 10.1089/omi.2019.0140

Mahapatra S., Hess A.M., Johnson J.L., Eisenach K.D., DeGroote M.A., Gitta P., Joloba M.L., Kaplan G., Walzl G., Boom W.H., Belisle J.T. A Metabolic Biosignature of Early Response to Anti-Tuberculosis Treatment. BMC Infect. Dis., 2014, vol. 14. Art. no. 53. DOI: 10.1186/1471-2334-14-53

Luies L., van Reenen M., Ronacher K., Walzl G., Loots D.T. Predicting Tuberculosis Treatment Outcome Using Metabolomics. Biomark. Med., 2017, vol. 11, no. 12, pp. 1057–1067. DOI: 10.2217/bmm-2017-0133

Published

2023-04-10

How to Cite

Popova Ю., Khimova Е., Eliseev П., Kolodkina О., Neminushchiy А., Maminova Г., Gadzhizade С., & Maryandyshev А. (2023). The Role of Urine Biomarkers in Diagnosing Pulmonary Tuberculosis (Review). Journal of Medical and Biological Research, 11(2), 217–231. https://doi.org/10.37482/2687-1491-Z138