The Role of the Acetylcholine System and Its Components in the Development of Post-COVID Syndromes (Review)
DOI:
https://doi.org/10.37482/2687-1491-Z182Keywords:
acetylcholine system disorder, neuromuscular junction, synaptic signalling disorder, consequences of COVID-19, post-COVID syndromeAbstract
According to the latest data, COVID-19 is classified as a respiratory virus. However, it has been proven to cause a significant multi-organ dysfunction. Despite the increase in the effectiveness of treatment tactics, a post-COVID-19 symptom complex has been observed in patients after recovery, manifesting itself as cephalalgia, brain fog, high fever, muscle weakness and a decrease (or increase) in arterial pressure. To describe this condition, a clinical characteristic has been proposed: post-acute COVID-19 syndrome (PACS). Approximately 57 % of patients hospitalized with COVID-19 have symptoms of PACS even one year after initial infection with COVID-19. This pathological condition is being actively studied, but the question of the causes of PACS and its development mechanisms remains open. One of the possible reasons behind this symptomatology, in our opinion, is a disorder of the body’s acetylcholine system and its components. The acetylcholine system plays an integral role in various physiological and pathophysiological processes, such as the regulation of the muscular system, immune and inflammatory reactions, wound healing, as well as the development of cardiovascular, respiratory and other diseases. A key way of translating acetylcholine signals in the body is through the use of neurotransmission via a chemical synapse. Based on current literature data, there is reason to believe that viral invasion can significantly change the functional activity of the vagus nerve by disrupting signal transmission in a synapse. We believe that the hyperimmune response caused by COVID-19 triggers a chain of pathological mechanisms that are associated with disrupted nitric oxide production and imbalance in acetylcholine and its receptors. An understanding of these processes may open up prospects for improving the effectiveness of treatment and rehabilitation of patients with COVID-19.
Downloads
References
WHO COVID-19 Dashboard. URL: https://covid19.who.int/ (дата обращения: 04.04.2023).
Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li X., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao H., Jin Q., Wang J., Cao B. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China // Lancet. 2020. Vol. 395, № 10223. Р. 497–506. https://doi.org/10.1016/s0140-6736(20)30183-5
Yahia A.I.O. Liver Injury and Dysfunction Associated with COVID-19: A Review Article // Clin. Lab. 2022. Vol. 68, № 1. https://doi.org/10.7754/clin.lab.2021.210535
Ayoubkhani D., Khunti K., Nafilyan V., Maddox T., Humberstone B., Diamond I., Banerjee A. Post-Covid Syndrome in Individuals Admitted to Hospital with Covid-19: Retrospective Cohort Study // BMJ. 2021. Vol. 372. Art. № n693. https://doi.org/10.1136/bmj.n693
Djhysiol. 2022. Vol. 322, № 1. P. C1–C11. https://doi.org/10.1152/ajpcell.00375.2021
Tobler D.L., Pruzansky A.J., Naderi S., Ambrosy A.P., Slade J.J. Long-Term Cardiovascular Effects of COVID-19: Emerging Data Relevant to the Cardiovascular Clinician // Curr. Atheroscler. Rep. 2022. Vol. 24, № 7. P. 563–570. https://doi.org/10.1007/s11883-022-01032-8
Willi S., Lüthold R., Hunt A., Hänggi N.V., Sejdiu D., Scaff C., Bender N., Staub K., Schlagenhauf P. COVID-19 Sequelae in Adults Aged Less Than 50 Years: A Systematic Review // Travel Med. Infect. Dis. 2021. Vol. 40. Art. № 101995. https://doi.org/10.1016/j.tmaid.2021.101995
Haam J., Yakel J.L. Cholinergic Modulation of the Hippocampal Region and Memory Function // J. Neurochem. 2017. Vol. 142, suppl. 2. Р. 111–121. https://doi.org/10.1111/jnc.14052
Mesulam M. The Cholinergic Lesion of Alzheimer’s Disease: Pivotal Factor or Side Show? // Learn. Mem. 2004. Vol. 11, № 1. Р. 43–49. https://doi.org/10.1101/lm.69204
Picciotto M.R., Higley M.J., Mineur Y.S. Acetylcholine as а Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior // Neuron. 2012. Vol. 76, № 1. Р. 116–129. https://doi.org/10.1016/j.neuron.2012.08.036
Ahmed N.Y., Knowles R., Dehorter N. New Insights into Cholinergic Neuron Diversity // Front. Mol. Neurosci. 2019. № 12. Art. № 204. https://doi.org/10.3389/fnmol.2019.00204
Rima M., Lattouf Y., Younes M.A., Bullier E., Legendre P., Mangin J.-M., Hong E. Dynamic Regulation of the Cholinergic System in the Spinal Central Nervous System // Sci. Rep. 2020. Vol. 10. Art. № 15338. https://doi.org/10.1038/s41598-020-72524-3
Bosmans G., Shimizu G., Florens M., Gonzalez-Dominguez E., Matteoli G., Boeckxstaens G.E. Cholinergic Modulation of Type 2 Immune Responses // Front. Immunol. 2017. Vol. 8. Art. № 1873. https://doi.org/10.3389/fimmu.2017.01873
Scott G.D., Fryer A.D. Role of Parasympathetic Nerves and Muscarinic Receptors in Allergy and Asthma // Chem. Immunol. Allergy. 2012. № 98. Р. 48–69. https://doi.org/10.1159/000336498
Saw E.L., Pearson J.T., Schwenke D.O., Munasinghe P.E., Tsuchimochi H., Rawal S., Coffey S., Davis P., Bunton R., Van Hout I., Kai Y., Williams M.J.A., Kakinuma Y., Fronius M., Katare R. Activation of the Cardiac NonNeuronal Cholinergic System Prevents the Development of Diabetes-Associated Cardiovascular Complications // Cardiovasc. Diabetol. 2021. Vol. 20, № 1. Art. № 50. https://doi.org/10.1186/s12933-021-01231-8
Eccles J.C., Fatt P., Koketsu K. Cholinergic and Inhibitory Synapses in a Pathway from Motor-Axon Collaterals to Motoneurones // J. Physiol. 1954. Vol. 126, № 3. Р. 524–562. https://doi.org/10.1113/jphysiol.1954.sp005226
Chen J., Mizushige T., Nishimune H. Active Zone Density Is Conserved During Synaptic Growth but Impaired in Aged Mice // J. Comp. Neurol. 2012. Vol. 520, № 2. Р. 434–452. https://doi.org/10.1002/cne.22764
Schiavo G., Stenbeck G., Rothman J.E., Söllner T.H. Binding of the Synaptic Vesicle v-SNARE, Synaptotagmin, to the Plasma Membrane t-SNARE, SNAP-25, Can Explain Docked Vesicles at Neurotoxin-Treated Synapses // Proc. Natl. Acad. Sci. USA. 1997. Vol. 94, № 3. Р. 997–1001. https://doi.org/10.1073/pnas.94.3.997
White D.N., Stowell M.H.B. Room for Two: The Synaptophysin/Synaptobrevin Complex // Front. Synaptic Neurosci. 2021. Vol. 13. Art. № 740318. https://doi.org/10.3389/fnsyn.2021.740318
Krause M., Wernig A. The Distribution of Acetylcholine Receptors in the Normal and Denervated Neuromuscular Junction of the Frog // J. Neurocytol. 1985. Vol. 14, № 5. P. 765–780. https://doi.org/10.1007/BF01170827
Fujita A., Cheng J., Tauchi-Sato K., Takenawa T., Fujimoto T. A Distinct Pool of Phosphatidylinositol 4,5-Bisphosphate in Caveolae Revealed by a Nanoscale Labeling Technique // Proc. Natl. Acad. Sci. USA. 2009. Vol. 106, № 23. Р. 9256–9261. https://doi.org/10.1073/pnas.0900216106
Петров А.М., Зефиров А.Л. Холестерин и липидные плотики биологических мембран. Роль в секреции, рецепции и функционировании ионных каналов // Успехи физиол. наук. 2013. Т. 44, № 1. С. 17–38.
Gazzerro E., Sotgia F., Bruno C., Lisanti M.P., Minetti C. Caveolinopathies: From the Biology of Caveolin-3 to Human Diseases // Eur. J. Hum. Genet. 2010. Vol. 18, № 2. Р. 137–145. https://doi.org/10.1038/ejhg.2009.103
Hausser A., Schlett K. Coordination of AMPA Receptor Trafficking by Rab GTPases // Small GTPases. 2019. Vol. 10, № 6. Р. 419–432. https://doi.org/10.1080/21541248.2017.1337546
Zakany F., Kovacs T., Panyi G., Varga Z. Direct and Indirect Cholesterol Effects on Membrane Proteins with Special Focus on Potassium Channels // Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2020. Vol. 1865, № 8. Art. № 158706. https://doi.org/10.1016/j.bbalip.2020.158706
Kravtsova V.V., Matchkov V.V., Bouzinova E.V., Vasiliev A.N., Razgovorova I.A., Heiny J.A., Krivoi I.I. IsoformSpecific Na,K-ATPase Alterations Precede Disuse-Induced Atrophy of Rat Soleus Muscle // Biomed. Res. Int. 2015. Vol. 2015. Art. № 720172. https://doi.org/10.1155/2015/720172
McHardy S.F., Wang H.L., McCowen S.V., Valdez M.C. Recent Advances in Acetylcholinesterase Inhibitors and Reactivators: An Update on the Patent Literature (2012–2015) // Expert Opin. Ther. Pat. 2017. Vol. 27, № 4. Р. 455–476. https://doi.org/10.1080/13543776.2017.1272571
Bonaz B., Sinniger V., Pellissier S. Therapeutic Potential of Vagus Nerve Stimulation for Inflammatory Bowel Diseases // Front. Neurosci. 2021. Vol. 15. Art. № 650971. https://doi.org/10.3389/fnins.2021.650971
de Jonge W.J., Ulloa L. The Alpha7 Nicotinic Acetylcholine Receptor as a Pharmacological Target for Inflammation // Br. J. Pharmacol. 2007. Vol. 151, № 7. Р. 915–929. https://doi.org/10.1038/sj.bjp.0707264
Brenner H.R., Akaaboune M. Recycling of Acetylcholine Receptors at Ectopic Postsynaptic Clusters Induced by Exogenous Agrin in Living Rats // Dev. Biol. 2014. Vol. 394, № 1. Р. 122–128. https://doi.org/10.1016/j.ydbio.2014.07.018
Barrantes F.J. Cell-Surface Translational Dynamics of Nicotinic Acetylcholine Receptors // Front. Synaptic Neurosci. 2014. Vol. 6. Art. № 25. https://doi.org/10.3389/fnsyn.2014.00025
Karimi N., Okhovat A.A., Ziaadini B., Haghi Ashtiani B., Nafissi S., Fatehi F. Myasthenia Gravis Associated with Novel Coronavirus 2019 Infection: A Report of Three Cases // Clin. Neurol. Neurosurg. 2021. Vol. 208. Art. № 106834. https://doi.org/10.1016/j.clineuro.2021.106834
Alexandris N., Lagoumintzis G., Chasapis C.T., Leonidas D.D., Papadopoulos G.E., Tzartos S.J., Tsatsakis A., Eliopoulos E., Poulas K., Farsalinos K. Nicotinic Cholinergic System and COVID-19: In silico Evaluation of Nicotinic Acetylcholine Receptor Agonists as Potential Therapeutic Interventions // Toxicol. Rep. 2020. Vol. 8. P. 73–83. https://doi.org/10.1016/j.toxrep.2020.12.013
Bruneau E.G., Akaaboune M. The Dynamics of Recycled Acetylcholine Receptors at the Neuromuscular Junction in vivo // Development. 2006. Vol. 133, № 22. Р. 4485–4493. https://doi.org/10.1242/dev.02619
Lück G., Hoch W., Hopf C., Blottner D. Nitric Oxide Synthase (NOS-1) Coclustered with Agrin-Induced AChRSpecializations on Cultured Skeletal Myotubes // Mol. Cell. Neurosci. 2000. Vol. 16, № 3. Р. 269–281. https://doi.org/10.1006/mcne.2000.0873
Klyachko V.A., Ahern G.P., Jackson M.B. cGMP-Mediated Facilitation in Nerve Terminals by Enhancement of the Spike Afterhyperpolarization // Neuron. 2001. Vol. 31, № 6. Р. 1015–1025. https://doi.org/10.1016/s08966273(01)00449-4
Sayed N., Baskaran P., Ma X., van den Akker F., Beuve A. Desensitization of Soluble Guanylyl Cyclase, the NO Receptor, by S-Nitrosylation // Proc. Natl. Acad. Sci. USA. 2007. Vol. 104, № 30. Р. 12312–12317. https://doi.org/10.1073/pnas.0703944104
Проскурина С.Е. Влияние оксида азота (NO) на активность фермента ацетилхолинэстеразы в нервномышечном синапсе крысы: дис. … канд. биол. наук. Казань, 2016. 134 с.
Petrov K.A., Malomouzh A.I., Kovyazina I.V., Krejci E., Nikitashina A.D., Proskurina S.E., Zobov V.V., Nikolsky E.E. Regulation of Acetylcholinesterase Activity by Nitric Oxide in Rat Neuromuscular Junction via N-Methyl-D-Aspartate Receptor Activation // Eur. J. Neurosci. 2013. Vol. 37, № 2. Р. 181–189. https://doi.org/10.1111/ejn.12029
Rosas-Ballina M., Ochani M., Parrish W.R., Ochani K., Harris Y.T., Huston J.M., Chavan S., Tracey K.J. Splenic Nerve Is Required for Cholinergic Antiinflammatory Pathway Control of TNF in Endotoxemia // Proc. Natl. Acad. Sci. USA. 2008. Vol. 105, № 31. Р. 11008–11013. https://doi.org/10.1073/pnas.0803237105
Balez R., Ooi L. Getting to NO Alzheimer’s Disease: Neuroprotection versus Neurotoxicity Mediated by Nitric Oxide // Oxid. Med. Cell. Longev. 2016. Vol. 2016. Art. № 3806157. https://doi.org/10.1155/2016/3806157
Gilhus N.E., Tzartos S., Evoli A., Palace J., Burns T.M., Verschuuren J.J.G.M. Myasthenia Gravis // Nat. Rev. Dis. Primers. 2019. Vol. 5, № 1. Art. № 30. https://doi.org/10.1038/s41572-019-0079-y
Leoni V., Caccia C. The Impairment of Cholesterol Metabolism in Huntington Disease // Biochim. Biophys. Acta. 2015. Vol. 1851, № 8. Р. 1095–1105. https://doi.org/10.1016/j.bbalip.2014.12.018
Grajales-Reyes G.E., Báez-Pagán C.A., Zhu H., Grajales-Reyes J.G., Delgado-Vélez M., García-Beltrán W.F., Luciano C.A., Quesada O., Ramírez R., Gómez C.M., Lasalde-Dominicci J.A. Transgenic Mouse Model Reveals an Unsuspected Role of the Acetylcholine Receptor in Statin-Induced Neuromuscular Adverse Drug Reactions // Pharmacogenomics J. 2013. Vol. 13, № 4. Р. 362–368. https://doi.org/10.1038/tpj.2012.21
Crespi B., Alcock J. Conflicts Over Calcium and the Treatment of COVID-19 // Evol. Med. Public Health. 2021. Vol. 9, № 1. Р. 149–156. https://doi.org/10.1093/emph/eoaa046
Ramadan J.W., Steiner S.R., O’Neill C.M., Nunemaker C.S. The Central Role of Calcium in the Effects of Cytokines on Beta-Cell Function: Implications for Type 1 and Type 2 Diabetes // Cell Calcium. 2011. Vol. 50, № 6. P. 481–490. https://doi.org/10.1016/j.ceca.2011.08.005
Luciani D.S., Gwiazda K.S., Yang T.L., Kalynyak T.B., Bychkivska Y., Frey M.H., Jeffrey K.D., Sampaio A.V., Underhill T.M., Johnson J.D. Roles of IP3R and RyR Ca2+ Channels in Endoplasmic Reticulum Stress and β-Cell Death // Diabetes. 2009. Vol. 58, № 2. Р. 422–432. https://doi.org/10.2337/db07-1762
Berchtold M.W., Brinkmeier H., Müntener M. Calcium Ion in Skeletal Muscle: Its Crucial Role for Muscle Function, Plasticity, and Disease // Physiol. Rev. 2000. Vol. 80, № 3. P. 1215–1265. https://doi.org/10.1152/physrev.2000.80.3.1215
Guo T., Fan Y., Chen M., Wu X., Zhang L., He T., Wang H., Wan J., Wang X., Lu Z. Cardiovascular Implications of Fatal Outcomes of Patients with Coronavirus Disease 2019 (COVID-19) // JAMA Cardiol. 2020. Vol. 5, № 7. Р. 811–818. https://doi.org/10.1001/jamacardio.2020.1017
Arentz M., Yim E., Klaff L., Lokhandwala S., Riedo F.X., Chong M., Lee M. Characteristics and Outcomes of 21 Critically Ill Patients with COVID-19 in Washington State // JAMA. 2020. Vol. 323, № 16. Р. 1612–1614. https://doi.org/10.1001/jama.2020.4326
Dani M., Dirksen A., Taraborrelli P., Torocastro M., Panagopoulos D., Sutton R., Lim P.B. Autonomic Dysfunction in ‘Long COVID’: Rationale, Physiology and Management Strategies // Clin. Med. (Lond.). 2021. Vol. 21, № 1. Р. e63–e67. https://doi.org/10.7861/clinmed.2020-0896
Jung F., Krüger-Genge A., Franke R.P., Hufert F., Küpper J.H. COVID-19 and the Endothelium // Clin. Hemorheol. Microcirc. 2020. Vol. 75, № 1. Р. 7–11. https://doi.org/10.3233/ch-209007
Jardine D.L., Wieling W., Brignole M., Lenders J.W.M., Sutton R., Stewart J. The Pathophysiology of the Vasovagal Response // Heart Rhythm. 2018. Vol. 15, № 6. Р. 921–929. https://doi.org/10.1016/j.hrthm.2017.12.013
Chung S.A., Yuan H., Chung F. A Systemic Review of Obstructive Sleep Apnea and Its Implications for Anesthesiologists // Anesth. Analg. 2008. Vol. 107, № 5. Р. 1543–1563. https://doi.org/10.1213/ane.0b013e318187c83a
Monahan K.D. Effect of Aging on Baroreflex Function in Humans // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007. Vol. 293, № 1. Р. R3–R12. https://doi.org/10.1152/ajpregu.00031.2007