Effects of Radio Frequency Electromagnetic Fields on the Nervous System. In vitro Experiments (Review)

Authors

  • Natalia I. Khorseva Emanuel Institute of Biochemical Physics, Russian Academy of Sciences (Moscow, Russia) https://orcid.org/0000-0002-3444-0050
  • Pavel E. Grigoriev Sevastopol State University (Sevastopol, Russia); Sechenov Academic Research Institute of Physical Methods of Treatment, Medical Climatology and Rehabilitation (Yalta, Republic of Crimea, Russia) https://orcid.org/0000-0001-7390-9109

DOI:

https://doi.org/10.37482/2687-1491-Z181

Keywords:

radio frequency electromagnetic field, Wi-Fi, 5G, in vitro experiments, central nervous system, isolated cells of the nervous system, myelin sheath, blood–brain barrier

Abstract

The effects of mobile communications on the population, primarily on children and adolescents as the cohort most vulnerable to any environmental factors, dictates the need for a thorough investigation into the impact of radio frequency electromagnetic fields (RF EMF) on the central nervous system (CNS) as the main target of their action. In this regard, the analysis of experimental data as an indirect assessment of possible negative changes in the body of young animals under the influence of RF EMF, including 5G and Wi-Fi, is highly relevant. We performed a systematization of experimental data, which will be presented in two parts: in vitro and in vivo experiments. This article introduces materials indicating both diversity of approaches to studying the effects of RF EMF on the central nervous system and difficulties of systematizing the results of the experiments. The analysis of literature data showed that, despite the numerous studies into the effects of RF EMF in vitro, CNS cell cultures are used rather rarely. However, this paper examines in detail the results of in vitro experiments: changes in the action potential, morphological changes in cells and the myelin sheath, and changes in the permeability of the blood–brain barrier (using cultures of only nerve cells). It was established that, despite some inconsistency in the results obtained, most studies indicate a negative effect of RF EMF on CNS cells. The morphological and histological changes in CNS structures under the influence of RF EMF will be presented in the next part of the review.

Downloads

Download data is not yet available.

References

Хорсева Н.И., Григорьев Ю.Г., Григорьев П.Е. Влияние низкоинтенсивных электромагнитных полей на антенатальный период развития организма. Часть 1. От гаметогенеза до родов (обзор) // Журн. мед.-биол. исследований. 2017. Т. 5, № 4. С. 42–54. http://dx.doi.org/10.17238/issn2542-1298.2017.5.4.42

Хорсева Н.И., Григорьев Ю.Г., Григорьев П.Е. Влияние низкоинтенсивных электромагнитных полей на антенатальный период развития организма. Часть 2. Отдаленные последствия в постнатальный период (обзор) // Журн. мед.-биол. исследований. 2018. Т. 6, № 1. С. 41–55. https://doi.org/10.17238/issn2542-1298.2018.6.1.41

Григорьев Ю.Г., Григорьев О.А. Сотовая связь и здоровье: электромагнитная обстановка, радиобиологические и гигиенические проблемы, прогноз опасности. М.: Экономика, 2013. 567 с.

Григорьев Ю.Г., Хорсева Н.И. Мобильная связь и здоровье детей. Оценка опасности применения мобильной связи детьми и подростками. Рекомендации детям и родителям. М.: Экономика, 2014. 230 с.

Lai Y.-F., Wang H.-Y., Peng R.-Y. Establishment of Injury Models in Studies of Biological Effects Induced by Microwave Radiation // Mil. Med. Res. 2021. Vol. 8, № 1. Art. № 12. https://doi.org/10.1186/s40779-021-00303-w

Redmayne M., Johansson O. Could Myelin Damage from Radiofrequency Electromagnetic Field Exposure Help Explain the Functional Impairment Electrohypersensitivity? A Review of the Evidence // J. Toxicol. Environ. Health B Crit. Rev. 2014. Vol. 17, № 5. P. 247–258. https://doi.org/10.1080/10937404.2014.923356

Zhi W.-J., Wang L.-F., Hu X.-J. Recent Advances in the Effects of Microwave Radiation on Brains // Mil. Med. Res. 2017. Vol. 4, № 1. Art. № 29. https://doi.org/10.1186/s40779-017-0139-0

Narayanan S.N., Jetti R., Kesari K.K., Kumar R.S., Nayak S.B., Bhat P.G. Radiofrequency Electromagnetic Radiation-Induced Behavioral Changes and Their Possible Basis // Environ. Sci. Pollut. Res. 2019. Vol. 26, № 30. P. 30693–30710. https://doi.org/10.1007/s11356-019-06278-5

Kim J.H., Lee J.-K., Kim H.-G., Kim K.-B., Kim H.R. Possible Effects of Radiofrequency Electromagnetic Field Exposure on Central Nerve System // Biomol. Ther. 2019. Vol. 27, № 3. P. 265–275. https://doi.org/10.4062/biomolther.2018.152

Romeo S., Zeni O., Scarfì M.R., Poeta L., Lioi M.B., Sannino A. Radiofrequency Electromagnetic Field Exposure and Apoptosis: A Scoping Review of in vitro Studies on Mammalian Cells // Int. J. Mol. Sci. 2022. Vol. 23, № 4. Art. № 2322. https://doi.org/10.3390/ijms23042322

Markov M., Grigoriev Yu.G. Wi-Fi Technology – an Uncontrolled Global Experiment on the Health of Mankind // Electromagn. Biol. Med. 2013. Vol. 32, № 2. P. 200–208. https://doi.org/10.3109/15368378.2013.776430

Григорьев Ю.Г., Самойлов А.С. 5G-стандарт сотовой связи. Суммарная радиобиологическая оценка опасности планетарного электромагнитного облучения населения: моногр. М.: Федер. мед. биофиз. центр им. А.И. Бурназяна ФМБА, 2021. 220 с.

Karipidis K., Mate R., Urban D., Tinker R., Wood A. 5G Mobile Networks and Health-a State-of-the-Science Review of the Research into Low-Level RF Fields Above 6 GHz // J. Expo. Sci. Environ. Epidemiol. 2021. Vol. 31, № 4. P. 585–605. https://doi.org/10.1038/s41370-021-00297-6

Nyberg N.R., McCredden J.E., Weller S.G., Hardell L. The European Union Prioritises Economics Over Health in the Rollout of Radiofrequency Technologies // Rev. Environ. Health. 2022. Vol. 39, № 1. P. 47–64. https://doi.org/10.1515/reveh-2022-0106

Hu C., Zuo H., Li Y. Effects of Radiofrequency Electromagnetic Radiation on Neurotransmitters in the Brain // Front. Public Health. 2021. Vol. 9. Art. № 691880. https://doi.org/10.3389/fpubh.2021.691880

Sienkiewicz Z., van Rongen E. Can Low-Level Exposure to Radiofrequency Fields Effect Cognitive Behaviour in Laboratory Animals? A Systematic Review of the Literature Related to Spatial Learning and Place Memory // Int. J. Environ. Res. Public Health. 2019. Vol. 16, № 9. Art. № 1607. https://doi.org/10.3390/ijerph16091607

Ning W., Xu S.-J., Chiang H., Xu Z.-P., Zhou S.-Y., Yang W., Luo J.-H. Effects of GSM 1800 MHz on Dendritic Development of Cultured Hippocampal Neurons // Acta Pharmacol. Sin. 2007. Vol. 28, № 12. P. 1873–1880. https://doi.org/10.1111/j.1745-7254.2007.00668.x

Li Y., Deng P., Chen C., Ma Q., Pi H., He M., Lu Y., Gao P., Zhou C., He Z., Zhang Y., Yu Z., Zhang L. 1,800 MHz Radiofrequency Electromagnetic Irradiation Impairs Neurite Outgrowth with a Decrease in Rap1-GTP in Primary Mouse Hippocampal Neurons and Neuro2a Cells // Front. Public Health. 2021. Vol. 9. Art. № 771508. https://doi.org/10.3389/fpubh.2021.771508

Echchgadda I., Cantu J.C., Tolstykh G.P., Butterworth J.W., Payne J.A., Ibey B.L. Changes in the Excitability of Primary Hippocampal Neurons Following Exposure to 3.0 GHz Radiofrequency Electromagnetic Fields // Sci. Rep. 2022. Vol. 12. Art. № 3506. https://doi.org/10.1038/s41598-022-06914-0

Kim J.H., Chung K.H., Hwang Y.R., Park H.R., Kim H.J., Kim H.-G., Kim H.R. Exposure to RF-EMF Alters Postsynaptic Structure and Hinders Neurite Outgrowth in Developing Hippocampal Neurons of Early Postnatal Mice // Int. J. Mol. Sci. 2021. Vol. 22, № 10. Art. № 5340. https://doi.org/10.3390/ijms22105340

Chen C., Ma Q., Liu C., Deng P., Zhu G., Zhang L., He M., Lu Y., Duan W., Pei L., Li M., Yu Z., Zhou Z. Exposure to 1800 MHz Radiofrequency Radiation Impairs Neurite Outgrowth of Embryonic Neural Stem Cells // Sci. Rep. 2014. Vol. 4. Art. № 5103. https://doi.org/10.1038/srep05103

Chen C., Ma Q., Deng P., Lin M., Gao P., He M., Lu Y., Pi H., He Z., Zhou C., Zhang Y., Yu Z., Zhang L. 1800 MHz Radiofrequency Electromagnetic Field Impairs Neurite Outgrowth Through Inhibiting EPHA5 Signaling // Front. Cell Dev. Biol. 2021. Vol. 9. Art. № 657623. https://doi.org/10.3389/fcell.2021.657623

Su L., Yimaer A., Xu Z., Chen G. Effects of 1800 MHz RF-EMF Exposure on DNA Damage and Cellular Functions in Primary Cultured Neurogenic Cells // Int. J. Radiat. Biol. 2018. Vol. 94, № 3. P. 295–305. https://doi.org/10.1080/09553002.2018.1432913

Eghlidospour M., Ghanbari A., Mortazavi S.M., Azari H. Effects of Radiofrequency Exposure Emitted from a GSM Mobile Phone on Proliferation, Differentiation, and Apoptosis of Neural Stem Cells // Anat. Cell Biol. 2017. Vol. 50, № 2. P. 115–123. https://doi.org/10.5115/acb.2017.50.2.115

El Khoueiry C., Moretti D., Renom R., Camera F., Orlacchio R., Garenne A., Poulletier De Gannes F., PoqueHaro E., Lagroye I., Veyret B., Lewis N. Decreased Spontaneous Electrical Activity in Neuronal Networks Exposed to Radiofrequency 1,800 MHz Signals // J. Neurophysiol. 2018. Vol. 120, № 6. P. 2719–2729. https://doi.org/10.1152/jn.00589.2017

Romanenko S., Siegel P.H., Wagenaar D.A., Pikov V. Effects of Millimeter Wave Irradiation and Equivalent Thermal Heating on the Activity of Individual Neurons in the Leech Ganglion // J. Neurophysiol. 2014. Vol. 112, № 10. P. 2423–2431. https://doi.org/10.1152/jn.00357.2014

Romanenko S., Harvey A.R., Hool L., Fan S., Wallace V.P. Millimeter Wave Radiation Activates Leech Nociceptors via TRPV1-Like Receptor Sensitization // Biophys. J. 2019. Vol. 116, № 12. P. 2331–2345. https://doi.org/10.1016/j.bpj.2019.04.021

Wang L.-F., Li X., Gao Y-B., Wang S.-M., Zhao L., Dong J., Yao B.-W., Xu X.-P., Chang G.-M., Zhou H.-M., Hu X.-J., Peng R.-Y. Activation of VEGF/Flk-1-ERK Pathway Induced Blood–Brain Barrier Injury After Microwave Exposure // Mol. Neurobiol. 2015. Vol. 52, № 1. P. 478–491. https://doi.org/10.1007/s12035-014-8848-9

Pikov V., Arakaki X., Harrington M., Fraser S.E., Siegel P.H. Modulation of Neuronal Activity and Plasma Membrane Properties with Low-Power Millimeter Waves in Organotypic Cortical Slices // J. Neural Eng. 2010. Vol. 7, № 4. Art. № 045003. https://doi.org/10.1088/1741-2560/7/4/045003

Huang M., Liang C., Li S., Zhang J., Guo D., Zhao B., Liu Y., Peng Y., Xu J., Liu W., Guo G., Shi L. Two Autism/ Dyslexia Linked Variations of DOCK4 Disrupt the Gene Function on Rac1/Rap1 Activation, Neurite Outgrowth, and Synapse Development // Front. Cell. Neurosci. 2020. Vol. 13. Art. № 577. https://doi.org/10.3389/fncel.2019.00577

Фоминова У.Н., Гурина О.И., Шепелева И.И., Попова Т.Н., Кекелидзе З.И., Чехонин В.П. Нейротрофический фактор головного мозга: структура и взаимодействие с рецепторами // Рос. психиатр. журн. 2018. № 4. С. 64–72.

Сутормина Н.В. Роль нейротрофического фактора мозга (BDNF) в физической активности (обзор) // Комплекс. исслед. детства. 2022. Т. 4, № 2. С. 124–133. https://doi.org/10.33910/2687-0223-2022-4-2-124-133

İkinci A., Mercantepe T., Unal D., Erol H.S., Şahin A., Aslan A., Baş O., Erdem H., Sönmez O.F., Kaya H., Odacı E. Morphological and Antioxidant Impairments in the Spinal Cord of Male Offspring Rats Following Exposure to a Continuous 900 MHz Electromagnetic Field During Early and Mid-Adolescence // J. Chem. Neuroanat. 2016. Vol. 75, рt B. P. 99–104. https://doi.org/10.1016/j.jchemneu.2015.11.006

Kim J.H., Yu D.-H., Huh Y.H., Lee E.H., Kim H.-G., Kim H.R. Long-Term Exposure to 835 MHz RF-EMF Induces Hyperactivity, Autophagy and Demyelination in the Cortical Neurons of Mice // Sci. Rep. 2017. Vol. 7. Art. № 41129. https://doi.org/10.1038/srep41129

Sharma A., Sharma S., Shrivastava S., Singhal P.K., Shukla S. Mobile Phone Induced Cognitive and Neurochemical Consequences // J. Chem. Neuroanat. 2019. Vol. 102. Art. № 101684. https://doi.org/10.1016/j.jchemneu.2019.101684

Sharma A., Shrivastava S., Singh A., Gupte S.S., Rathour A., Reshi M.S., Shukla S. Evidences of the Radiofrequency Exposure on the Antioxidant Status, Potentialy Contributing to the Inflammatory Response and Demyelination in Rat Brain // Environ. Toxicol. Pharmacol. 2022. Vol. 94. Art. № 103903. https://doi.org/10.1016/j.etap.2022.103903

Tang J., Zhang Y., Yang L., Chen Q., Tan L., Zuo S., Feng H., Chen Z., Zhu G. Exposure to 900 MHz Electromagnetic Fields Activates the mkp-1/ERK Pathway and Causes Blood-Brain Barrier Damage and Cognitive Impairment in Rats // Brain Res. 2015. Vol. 1601. P. 92–101. https://doi.org/10.1016/j.brainres.2015.01.019

Finnie J.W., Blumbergs P.C., Manavis J., Utteridge T.D., Gebski V., Davies R.A., Vernon-Roberts B., Kuchel T.R. Effect of Long-Term Mobile Communication Microwave Exposure on Vascular Permeability in Mouse Brain // Pathology. 2002. Vol. 34, № 4. P. 344–347. https://doi.org/10.1080/003130202760120517

Kuribayashi M., Wang J., Fujiwara O., Doi Y., Nabae K., Tamano S., Ogiso T., Asamoto M., Shirai T. Lack of Effects of 1439 MHz Electromagnetic Near Field Exposure on the Blood–Brain Barrier in Immature and Young Rats // Bioelectromagnetics. 2005. Vol. 26, № 7. P. 578–588. https://doi.org/10.1002/bem.20138

Schirmacher A., Winters S., Fischer S., Goeke J., Galla H.J., Kullnick U., Ringelstein E.B., Stögbauer F. Electromagnetic Fields (1.8 GHz) Increase the Permeability to Sucrose of the Blood–Brain Barrier in vitro // Bioelectromagnetics. 2000. Vol. 21, № 5. P. 338–345.

Published

2024-05-17

How to Cite

Khorseva Н. И. ., & Grigoriev П. Е. . (2024). Effects of Radio Frequency Electromagnetic Fields on the Nervous System. In vitro Experiments (Review). Journal of Medical and Biological Research, 12(2), 229–239. https://doi.org/10.37482/2687-1491-Z181