Biophysical Properties of Blood Cells in People Aged 36–59 Years Under Mechanical Stress in vitro
DOI:
https://doi.org/10.37482/2687-1491-Z209Keywords:
middle age, mechanical stress in vitro, biophysical properties of blood cells, cell surface charge, Young’s modulus, atomic force microscopyAbstract
The influence of the adenosine triphosphate molecule on cell signalling cascades under different physiological conditions, such as disrupted regeneration processes in the body, is of particular interest for scientists. The purpose of this research was to study the biophysical properties of formed elements in middle-aged people under mechanical stress in vitro. Materials and methods. The experiment was conducted at the Biochemistry Department of the Medical Institute, Belgorod State National Research University. We studied blood samples from healthy people aged 36 to 59 years (n = 30) undergoing a routine medical examination at St. Joasaph Belgorod Regional Clinical Hospital. All samples were divided into experimental (n = 30) and control (n = 30); the former were subjected to mechanical action, the latter remained intact. Methods of atomic force microscopy were applied, namely, force spectroscopy and the Kelvin probe. Cell surface stiffness was determined by calculating Young’s modulus. Results. Under mechanical stress in vitro, the surface charge of erythrocytes, segmented granulocytes, and lymphocytes became more negative, while the surface potential of platelet plasmalemma became more positive. At the same time, surface stiffness of erythrocytes and lymphocytes increased, while that of neutrophils and platelets decreased. The results of this study expand the knowledge about changes in the biophysical properties of blood cells under mechanical stress. The data obtained may be useful for understanding the mechanisms of interaction between leukocytes and platelets, both being the main regulators of homeostatic processes in the bloodstream, and erythrocytes, involved in the regulation of the vascular tone of arterioles and, as a consequence, tissue perfusion, in middle-aged adults.
Downloads
References
Cui Y., Li C., Zeng X., Wei X., Li P., Cheng J., Xu Q., Yang Y. ATP Purinergic Receptor Signalling Promotes Sca-1+ Cell Proliferation and Migration for Vascular Remodelling // Cell Commun. Signal. 2023. Vol. 21. Art. № 173. https://doi.org/10.1186/s12964-023-01185-2
Zhang Y., Wernly B., Cao X., Mustafa S.J., Tang Y., Zhou Z. Adenosine and Adenosine Receptor-Mediated Action in Coronary Microcirculation // Basic Res. Cardiol. 2021. Vol. 11, № 1. Art. № 22. https://doi.org/10.1007%2Fs00395-021-00859-7
Burnstock G. Introduction to Purinergic Signaling // Purinergic Signaling: Methods and Protocols / ed. by P. Pelegrín. New York: Humana, 2020. Р. 1–15. https://doi.org/10.1007/978-1-4939-9717-6_1
Коваленко С.С., Юсипович А.И., Паршина Е.Ю., Максимов Г.В. Роль пуринергических рецепторов эритроцита в регуляции конформации и способности гемоглобина переносить кислород и оксид азота (II) // Бюл. эксперим. биологии и медицины. 2015. Т. 159, № 2. С. 170–173.
Серебряная Н.Б., Фомичева Е.Е., Якуцени П.П. Пуринергическая регуляция нейровоспаления при черепномозговой травме // Успехи физиол. наук. 2021. Т. 52, № 3. С. 24–40. https://doi.org/10.31857/S0301179821030073
Zhou Z. Purinergic Interplay Between Erythrocytes and Platelets in Diabetes-Associated Vascular Dysfunction // Purinergic Signal. 2021. Vol. 17, № 4. P. 705–712. https://doi.org/10.1007/s11302-021-09807-5
Olivieri A., Pala M., Gandini F., Kashani B.H., Perego U.A., Woodward S.R., Grugni V., Battaglia V., Semino O., Achilli A., Richards M.B., Torroni A. Mitogenomes from Two Uncommon Haplogroups Mark Late Glacial/Postglacial Expansions from the Near East and Neolithic Dispersals Within Europe // PLoS One. 2013. Vol. 8, № 7. Art. № e70492. https://doi.org/10.1371/journal.pone.0070492
Узикова Е.В., Милорадов М.Ю., Левин В.Н., Булаева С.В., Муравьёв А.В., Чиркова Ж.В. Исследование изменения агрегации эритроцитов при инкубации с замещенными 4-гидрокси-6,7-дициано-1,4-бензоксазин-3-онами // Яросл. пед. вест. 2011. Т. 3, № 3. С. 108–112.
Mahdi A., Tratsiakovich Y., Tengbom J., Jiao T., Garib L., Alvarsson M., Yang J., Pernow J., Zhou Z. Erythrocytes Induce Endothelial Injury in Type 2 Diabetes Through Alteration of Vascular Purinergic Signaling // Front. Pharmacol. 2020. Vol. 11. Art. № 603226. https://doi.org/10.3389%2Ffphar.2020.603226
Lee N.T., Ong L.K., Gyawali P., Nassir C.M.N.C.M., Mustapha M., Nandurkar H.H., Sashindranath M. Role of Purinergic Signalling in Endothelial Dysfunction and Thrombo-Inflammation in Ischaemic Stroke and Cerebral Small Vessel Disease // Biomolecules. 2021. Vol. 11, № 7. Art. № 994. https://doi.org/10.3390/biom11070994
Oonishi T., Sakashita K., Uyesaka N. Regulation of Red Blood Cell Filterability by Ca2+ Influx and cAMPMediated Signaling Pathways // Am. J. Physiol. 1997. Vol. 273, № 6. P. C1828–C1834. https://doi.org/10.1152/ajpcell.1997.273.6.c1828
Сладкова Е.А., Шамрай Е.А., Тищенко А.Ю., Скоркина М.Ю. Изменение физико-химических свойств лимфоцитов в условиях механического стресса // Биофизика. 2019. № 4. С. 716–719. https://doi.org/10.1134/S0006302919040094
Сладкова Е.А., Скоркина М.Ю. Оценка поверхностного потенциала лимфоцитов больных лейкозом методом зонда Кельвина // Биофизика. 2014. Т. 59, № 3. С. 310–313.
Патент № 2466401 С1 Российская Федерация, МПК G01N 33/49 (2006.01). Способ определения упругости клеток крови: № 2011109741/15: заявл. 15.03.2011: опубл. 11.10.2012 / Скоркина М.Ю., Федорова М.З., Сладкова Е.А., Забиняков Н.А.
Скоркина М.Ю., Федорова М.З., Муравьев А.В., Сладкова Е.А. Использование наномеханического сенсора для изучения морфофункциональных свойств лимфоцитов здоровых доноров и больных хроническим лимфобластным лейкозом // Клеточ. технологии в биологии и медицине. 2012. № 3. С. 172–175.
Ellsworth M.L., Ellis C.G., Goldman D., Stephenson A.H., Dietrich H.H., Sprague R.S. Erythrocytes: Oxygen Sensor and Modulators of Vascular Tone // Physiology (Bethesda). 2009. Vol. 24, № 2. P. 107–116. https://doi.org/10.1152%2Fphysiol.00038.2008
Zhou Z., Matsumoto T., Jankowski V., Pernow J., Jamal Mustafa S., Duncker D.J., Merkus D. Uridine Adenosine Tetraphosphate and Purinergic Signaling in Cardiovascular System: An Update // Pharmacol. Res. 2019. Vol. 141. P. 32–45. https://doi.org/10.1016/j.phrs.2018.12.009
Chandran N., Iyer M., Siama Z., Vellingiri B., Narayanasamy A. Purinergic Signalling Pathway: Therapeutic Target in Ovarian Cancer // Egypt. J. Med. Hum. Genetics. 2020. Vol. 21. Art. № 23. http://dx.doi.org/10.1186/s43042-020-00059-3
Engel T., Jiménez-Mateos E.M., Diaz-Hernandez M. Purinergic Signalling and Inflammation-Related Diseases // Cells. 2022. Vol. 11, № 23. Art. № 3748. https://doi.org/10.3390/cells11233748
De Ita M., Vargas M.H., Carbajal V., Ortiz-Quentero B., Lόpez-Lόpez C. ATP Releases ATP or Other Nucleotides from Human Peripheral Blood Leukocytes Through Purinergic P2 Receptors // Life Sci. 2016. Vol. 145. P. 85–92. https://doi.org/10.1016/j.lfs.2015.12.013
Junger W.G. Purinergic Regulation of Neutrophil Chemotaxis // Cell. Mol. Life Sci. 2008. Vol. 65, № 16. P. 2528–2540. https://doi.org/10.1007/s00018-008-8095-1
North R.A. P2X Receptors // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016. Vol. 371, № 1700. Art. № 20150427. https://doi.org/10.1098/rstb.2015.0427
Goldman N., Chandler-Militello D., Langevin H.M., Nedergaard M., Takano T. Purine Receptor Mediated Actin Cytoskeleton Remodeling of Human Fibroblasts // Cell Calcium. 2013. Vol. 53, № 4. P. 297–301. https://doi.org/10.1016/j.ceca.2013.01.004
Huang Z., Xie N., Illes P., Di Virgilio F., Ulrich H., Semyanov A., Verkhratsky A., Sperlagh B., Yu S.-G., Huang C., Tang Y. From Purines to Purinergic Signalling: Molecular Functions and Human Diseases // Signal Transduct. Target. Ther. 2021. Vol. 6, № 1. Art. № 162. https://doi.org/10.1038/s41392-021-00553-z