Beta-Casein of Cow’s Milk and Its Effects on the Human Body (Review)

Authors

DOI:

https://doi.org/10.37482/2687-1491-Z207

Keywords:

β-casomorphin-7, β-casein, A1 allele, A2 allele, peptide, cow’s milk, β-casein gene, lactose intolerance

Abstract

Cow’s milk is an important food product for humans since it has a complex chemical composition and high nutritional value. Over 140 fatty acids, including linoleic, linolenic and arachidonic acids, were found in milk’s lipid profile. Milk is rich in minerals and contains almost all fat-soluble and water-soluble vitamins. Milk proteins are a complete source of all essential amino acids for humans. Approximately 78 % of the total amount of protein in milk is casein. Beta-casein is one of the most important proteins in cow’s milk, accounting for up to 35 % of all milk proteins. It is believed that the A2A2 allele of the β-casein gene allows animals to produce а more nutritionally valuable milk since in this case, during the cleavage of β-casein in the human gastrointestinal tract, β-casomorphin-7 is either not produced or is produced in much smaller (trace) amounts than in the case of the А1А1 allele, which makes the process of milk digestion more physiological. Research has shown a link between β-casomorphin-7 and a variety of negative effects that occur both directly in the gastrointestinal tract and throughout the human body, contributing to the development of numerous pathologies, in particular type 1 diabetes mellitus, cardiac diseases, and various neurological disorders. A comprehensive study involving preschool children demonstrated that replacing regular milk with milk containing only A2А2 β-casein led to a significant reduction in complications associated with gastrointestinal intolerance as well as to improved cognitive functions.

Downloads

Download data is not yet available.

References

Ганиева Е.С., Канарейкина С.Г., Хабирова Ф.А., Канарейкин В.И. Сравнительный анализ биологической и пищевой ценности молока разных сельскохозяйственных животных // Вестн. Башкир. гос. аграр. ун-та. 2021. № 1(57). С. 49–55. https://doi.org/10.31563/1684-7628-2021-57-1-49-55

Аппалонова И.В., Смирнова Е.А., Никонорова Н.П. Исследование жирнокислотного состава липидов молока // Пищевая пром-сть. 2012. № 11. С. 72–75.

Бабенко И.А., Шумилова Н.Е. Влияние витаминов B1 и D на качество и пищевую ценность детского стерилизованного молока // Современные аспекты производства и переработки сельскохозяйственной продукции: сб. ст. по материалам VI Междунар. науч.-практ. конф. Краснодар: Кубан. гос. аграр. ун-т им. И.Т. Трубилина, 2018. С. 4–10.

Rangel A.H.N., Zaros L.G., Lima T.C., Borba L.H.F., Novaes L.P., Mota L.F.M., Silva M.S. Polymorphism in the Beta Casein Gene and Analysis of Milk Characteristics in Gir and Guzerà Dairy Cattle // Genet. Mol. Res. 2017. Vol. 16, № 2. https://doi.org/10.4238/gmr16029592

Хиценко А.В., Рогозинникова И.В. Использование молочных белков в пищевой промышленности // Молодежь и наука. 2019. № 3. С. 96.

Bhat M.Y., Dar T.A., Singh L.R. Casein Proteins: Structural and Functional Aspects // Milk Proteins – From Structure to Biological Properties and Health Aspects / ed. by I. Gigli. Rijeka: InTech, 2016. P. 1–18. https://doi.org/10.5772/64187

Rocha-Mendoza D., Jiménez-Flores R. Casein Nomenclature, Structure, and Association // Encyclopedia of Dairy Sciences / ed. by P.L.H. McSweeney, J.P. McNamara. Amsterdam: Academic Press, 2022. P. 870–880. https://doi.org/10.1016/B978-0-12-818766-1.00277-4

Cattaneo S., Masotti F., Stuknytė M., De Noni I. Impact of in vitro Static Digestion Method on the Release of β-Casomorphin-7 from Bovine Milk and Cheeses with A1 or A2 β-Casein Phenotypes // Food Chem. 2023. Vol. 404, pt. A. Art. № 134617. https://doi.org/10.1016/j.foodchem.2022.134617

de Vitte K., Kerziene S., Klementavičiūtė J., de Vitte M., Mišeikienė R., Kudlinskienė I., Čepaitė J., Dilbiene V., Stankevičius R. Relationship of β-Casein Genotypes (A1A1, A1A2 and A2A2) to the Physicochemical Composition and Sensory Characteristics of Cows’ Milk // J. Appl. Anim. Res. 2022. Vol. 50, № 1. P. 161–166. https://doi.org/10.1080/09712119.2022.2046005

Cieślińska A., Fiedorowicz E., Rozmus D., Sienkiewicz-Szłapka E., Jarmołowska B., Kamiński S. Does a Little Difference Make a Big Difference? Bovine β-Casein A1 and A2 Variants and Human Health – an Update // Int. J. Mol. Sci. 2022. Vol. 23, № 24. Art. № 15637. https://doi.org/10.3390/ijms232415637

Asledottir T., Le T.T., Poulsen N.A., Devold T.G., Larsen L.B., Vegarud G.E. Release of β-Casomorphin-7 from Bovine Milk of Different β-Casein Variants After ex vivo Gastrointestinal Digestion // Int. Dairy J. 2018. Vol. 81. P. 8–11. http://dx.doi.org/10.1016/j.idairyj.2017.12.014

Bielecka M., Cichosz G., Czeczot H. Antioxidant, Antimicrobial and Anticarcinogenic Activities of Bovine Milk Proteins and Their Hydrolysates – a Review // Int. Dairy J. 2022. Vol. 127. Art. № 105208. https://doi.org/10.1016/j.idairyj.2021.105208

Henschen A., Lottspeich F., Brantl V., Teschemacher H. Novel Opioid Peptides Derived from Casein (Beta-Casomorphins). II. Structure of Active Components from Bovine Casein Peptone // Hoppe Seylers Z. Physiol. Chem. 1979. Vol. 360, № 9. P. 1217–1224.

Thiruvengadam M., Venkidasamy B., Thirupathi P., Chung I.-M., Subramanian U. β-Casomorphin: A Complete Health Perspective // Food Chem. 2021. Vol. 337. Art. № 127765. https://doi.org/10.1016/j.foodchem.2020.127765

Cattaneo S., Stuknytė M., Masotti F., De Noni I. Protein Breakdown and Release of β-Casomorphins During in vitro Gastro-Intestinal Digestion of Sterilised Model Systems of Liquid Infant Formula // Food Chem. 2017. Vol. 217. P. 476–482. https://doi.org/10.1016/j.foodchem.2016.08.128

Хавкин А.И., Васиа М.Н., Новикова В.П. Биологическая роль казоморфинов (часть 2): роль в патологии человека // Эксперим. и клин. гастроэнтерология. 2021. № 12(196). С. 110–118. https://doi.org/10.31146/1682-8658-ecg-196-12-110-118

Summer A., Di Frangia F., Ajmone Marsan P., De Noni I., Malacarne M. Occurrence, Biological Properties and Potential Effects on Human Health of β-Casomorphin 7: Current Knowledge and Concerns // Crit. Rev. Food Sci. Nutr. 2020. Vol. 60, № 21. P. 3705–3723. https://doi.org/10.1080/10408398.2019.1707157

Taha A.M., Roshdy M.R., Mostafa H.A., Abdelazeem B. Ischemic Heart Disease in Africa: An Overnight Epidemiological Transition // Curr. Probl. Cardiol. 2024. Vol. 49, № 2. Art. № 102337. https://doi.org/10.1016/j.cpcardiol.2023.102337

Sokolov O., Kost N., Andreeva O., Korneeva E., Meshavkin V., Tarakanova Y., Dadayan A., Zolotarev Y., Grachev S., Mikheeva I., Varlamov O., Zozulya A. Autistic Children Display Elevated Urine Levels of Bovine Casomorphin-7 Immunoreactivity // Peptides. 2014. Vol. 56. P. 68–71. https://doi.org/10.1016/j.peptides.2014.03.007

Krischer J.P., Lynch K.F., Schatz D.A., Ilonen J., Lernmark Å., Hagopian W.A., Rewers M.J., She J.X., Simell O.G., Toppari J., Ziegler A.G., Akolkar B., Bonifacio E. The 6 Year Incidence of Diabetes-Associated Autoantibodies in Genetically At-Risk Children: The TEDDY Study // Diabetologia. 2015. Vol. 58, № 5. P. 980–987. https://doi.org/10.1007/s00125-015-3514-y

Chia J.S.J., McRae J.L., Kukuljan S., Woodford K., Elliott R.B., Swinburn B., Dwyer K.M. A1 Beta-Casein Milk Protein and Other Environmental Pre-Disposing Factors for Type 1 Diabetes // Nutr. Diabetes. 2017. Vol. 7, № 5. Art. № e274. https://doi.org/10.1038/nutd.2017.16

Tailford K.A., Berry C.L., Thomas A.C., Campbell J.H. A Casein Variant in Cow’s Milk Is Atherogenic // Atherosclerosis. 2003. Vol. 170, № 1. P. 13–19. https://doi.org/10.1016/s0021-9150(03)00131-x

Chang W.H., Zheng A.J., Chen Z.M., Zhang S., Cai H.Y., Liu G.H. β-Casomorphin Increases Fat Deposition in Broiler Chickens by Modulating Expression of Lipid Metabolism Genes // Animal. 2019. Vol. 13, № 4. P. 777–783. https://doi.org/10.1017/s1751731118002197

Sheng X., Li Z., Ni J., Yelland G. Effects of Conventional Milk versus Milk Containing Only A2 β-Casein on Digestion in Chinese Children: A Randomized Study // J. Pediatr. Gastroenterol. Nutr. 2019. Vol. 69, № 3. P. 375–382. https://doi.org/10.1097/mpg.0000000000002437

Кузьменко Н.Б., Кузина А.Н. Роль β-казеина в питании детей первых лет жизни // Лечащий врач. 2016. № 1. С. 16–19

Published

2024-10-02

How to Cite

Pankov М. Н., Smolina В. С., Stupina А. О., Klassen И. А., & Spasskiy Е. А. (2024). Beta-Casein of Cow’s Milk and Its Effects on the Human Body (Review). Journal of Medical and Biological Research, 12(3), 411–418. https://doi.org/10.37482/2687-1491-Z207