Lipid Profile of Plasma in Young Women Depending on Their Physical Activity and Hereditary Predisposition
DOI:
https://doi.org/10.37482/2687-1491-Z038Keywords:
LPL gene, APOA1 gene, PPARD gene, gene polymorphism, blood lipid concentration, level of motor activity, 20–26-year-old womenAbstract
We studied the association of the polymorphic rs320 variant of the lipoprotein lipase (LPL) gene, rs2016520 variant of the peroxisome proliferator-activated receptor delta (PPARD) gene and rs670 variant of the apolipoprotein A1 (APOA1) gene with blood lipids in female athletes and women not involved in sports. Key indicators of the lipid spectrum – total cholesterol (TC), triglycerides (TG), highdensity lipoproteins (HDL) and low-density lipoproteins (LDL) in the blood serum – were determined by the enzymatic method using Cormay reagents (Germany) and Fluorat-02-ABLF-T analyser (Russia). Genotyping of the samples was carried out by means of the PCR-RFLP analysis. A direct correlation was found between the *H+ allele of the rs320 polymorphic variant of the LPL gene and the blood levels of TC (r = 0.17; p = 0.01), TG (r = 0.33; p = 0.000005), LDL (r = 0.16; p = 0.02), and atherogenic index (AI) (r = 0.28; p = 0.0002), as well as an inverse correlation between this allele and HDL (r = –0.19; p = 0.009) in women not involved in sports. The *A allele of the polymorphic variant rs670 of the APOA1 gene in this group showed a negative correlation with TC (r = –0.22; p = 0.004) and TG (r = –0.31; p = 0.00004), while the polymorphic variant rs2016520 of the PPARD gene revealed a linear correlation of the *C allele with LDL (r = 0.15; p = 0.02) and AI (r = 0.16; p = 0.01). Three alleles – *H of the LPL gene, *G of the APOA1 gene and *T of the PPARD gene – demonstrated an additive effect on the decrease in TG, LDL and AI and on the increase in HDL in women regardless of their level of motor activity. There were no statistically significant differences in the level of blood lipids in female athletes with different genotypes of the LPL, PPARD, and APOA1 genes. Further research is needed involving larger samples of athletes.
For citation: Dautova A.Z., Shamratova V.G., Vorobʼeva E.V. Lipid Profile of Plasma in Young Women Depending on their Physical Activity and Hereditary Predisposition. Journal of Medical and Biological Research, 2021, vol. 9, no. 1, pp. 5–15. DOI: 10.37482/2687-1491-Z038
Downloads
References
Кох Н.В., Лифшиц Г.И., Воронина Е.Н. Возможности анализа полиморфизма генов липидного обмена для выявления факторов риска атеросклероза // Рос. кардиол. журн. 2014. № 10(114). С. 53–57. DOI: 10.15829/1560-4071-2014-10-53-57
Villard E.F., Khoury P.E., Frisdal E., Bruckert E., Clement K. Genetic Determination of Plasma Cholesterol Efflux Capacity Is Gender-Specific and Independent of HDL-Cholesterol Levels. Arterioscler. Thromb. Vasc. Biol., 2013, vol. 33, no. 4, pp. 822–828. DOI: 10.1161/ATVBAHA.112.300979
Wang X., Guo H., Li Y., Wang H., He J., Mu L., Hu Y., Ma J., Yan Y., Li S., Ding Y., Zhang M., Niu Q., Liu J., Zhang J., Ma R., Guo S. Interactions Among Genes Involved in Reverse Cholesterol Transport and in the Response to Environmental Factors in Dyslipidemia in Subjects from the Xinjiang Rural Area. PLoS One, 2018, vol. 13, no. 5. Art. no. e0196042. DOI: 10.1371/journal.pone.0196042
Alinaghian N., Abdollahi E., Torab M., Khodaparast M., Zamani F., Rahimi-Moghaddam P. Gender-Related Relation Between Metabolic Syndrome and S447X and HindIII Polymorphisms of Lipoprotein Lipase Gene in Northern Iran. Gene, 2019, vol. 706, pp. 13–18. DOI: 10.1016/j.gene.2019.04.069
Самгина Т.А., Бушуева О.Ю., Назаренко П.М., Полоников А.В. Связь полиморфизма HindIII гена липопротеинлипазы с развитием острого небилиарного панкреатита: пилотное исследование // Бюл. эксперим. биологии и медицины. 2016. № 1. С. 92–95. DOI: 10.1007/s10517-016-3350-1
Шахтшнейдер Е.В., Рагино Ю.И., Полонская Я.В., Каштанова Е.В., Воевода М.И. Ассоциация HindIII полиморфизма гена LPL с формированием липидного профиля сыворотки // Атеросклероз. 2014. Т. 10, № 2. С. 24–30.
Gilde A.J., van der Lee K.A., Willemsen P.H., Chinetti G., van der Leij F.R., van der Vusse G.J., Staels B., van Bilsen M. Peroxisome Proliferator-Activated Receptor (PPAR) α and PPARβ/δ, but Not PPARγ, Modulate the Expression of Genes Involved in Cardiac Lipid Metabolism. Circ. Res., 2003, vol. 92, no. 5, pp. 518–524. DOI: 10.1161/01. RES.0000060700.55247.7C
Fürnsinn C., Willson T.M., Brunmair B. Peroxisome Proliferator-Activated Receptor-δ, a Regulator of Oxidative Capacity, Fuel Switching and Cholesterol Transport. Diabetologia, 2007, vol. 50, no. 1, pp. 8–17. DOI: 10.1007/s00125-006-0492-0
Tan N.S., Michalik L., Desvergne B., Wahli W. Multiple Expression Control Mechanisms of Peroxisome Proliferator-Activated Receptors and Their Target Genes. J. Steroid Biochem. Mol. Biol., 2005, vol. 93, no. 2-5, pp. 99–105. DOI: 10.1016/j.jsbmb.2004.12.025
Vänttinen M., Nuutila P., Kuulasmaa T., Pihlajamäki J., Hällsten K., Virtanen K.A., Lautamäki R., Peltoniemi P., Takala T., Viljanen A.P., Knuuti J., Laakso M. Single Nucleotide Polymorphisms in the Peroxisome Proliferator-Activated Receptor Delta Gene Are Associated with Skeletal Muscle Glucose Uptake. Diabetes, 2005, vol. 54, no. 12, pp. 3587–3591. DOI: 10.2337/diabetes.54.12.3587
de Luis D., Izaola O., Primo D., Aller R. Role of rs670 Variant of APOA1 Gene on Metabolic Response After a High Fat vs. a Low Fat Hypocaloric Diets in Obese Human Subjects. J. Diabetes Complications, 2019, vol. 33, no. 33, pp. 249–254. DOI: 10.1016/j.jdiacomp.2018.10.015
Hunter D.J. Gene–Environment Interactions in Human Diseases. Nat. Rev. Genet., 2005, vol. 6, no. 4, pp. 287–298. DOI: 10.1038/nrg1578
Каунина Д.В., Викулов А.Д. Физическая работоспособность и липидный обмен спортсменов-пловцов высокой квалификации // Яросл. пед. вестн. 2012. Т. 3, № 4. С. 141–144.
Василенко В.С., Семенова Е.С., Семенова Ю.Б. Липиды крови у спортсменов в зависимости от направленности тренировочного процесса // Педиатр. 2017. Т. 8, № 2. С. 10–14.DOI: 10.17816/PED8210-14
Mathew C.G.P. The Isolation of High Molecular Weight Eukaryotic DNA. Walker J.M. (ed.). Nucleic Acids. Methods in Molecular Biology. Vol. 2. Humana Press, 1984, pp. 31–34. DOI: 10.1385/0-89603-064-4:31
Yan Z.-C., Shen C.-Y., Zhong J., Wang L., Ni Y.-X., Nie H., Zhu Z.-M. PPARdelta + 294T/C Gene Polymorphism Related to Plasma Lipid, Obesity and Left Ventricular Hypertrophy in Subjects with Metabolic Syndrome. Zhonghua Xin Xue Guan Bing Za Zhi, 2005, vol. 33, no. 6, pp. 529–533.
Casillas-Muñoz F., Valle Y., Muñoz-Valle J.F., Martínez-Fernández D.E., Reynoso-Villalpando G.L., Flores-Salinas H.E., Llamas-Covarrubias M.A., Padilla-Gutiérrez J.R. APOA1 and APOB Polymorphisms and Apolipoprotein Concentrations as Biomarkers of Risk in Acute Coronary Syndrome: Relationship with Lipid-Lowering Therapy Effectiveness. Med. Clin. (Barc.), 2018, vol. 151, no. 1, pp. 1–7. DOI: 10.1016/j.medcli.2017.07.026
Al-Bustan S.A., Al-Serri A.E., Annice B.G., Alnaqeeb M.A., Ebrahim G.A. Re-Sequencing of the APOAI Promoter Region and the Genetic Association of the -75G > A Polymorphism with Increased Cholesterol and Low Density Lipoprotein Levels Among a Sample of the Kuwaiti Population. BMC Med. Genet., 2013, no. 14. Art no. 90. DOI: 10.1186/1471-2350-14-90
Leońska-Duniec A., Cieszczyk P., Jastrzębski Z., Jażdżewska A., Lulińska-Kuklik E., Moska W., Ficek K., Niewczas M., Maciejewska-Skrendo A. The Polymorphisms of the PPARD Gene Modify Post-Training Body Mass and Biochemical Parameter Changes in Women. PLoS One, 2018, vol. 13, no. 8. Art. no. e0202557. DOI: 10.1371/journal. pone.0202557
Yang W., Mao S., Qu B., Zhang F., Xu Z. Association of Peroxisome Proliferator-Activated Receptor Delta and Additional Gene–Smoking Interaction on Cardiovascular Disease. Clin. Exp. Hypertens., 2017, vol. 39, no. 2, pp. 114–118. DOI: 10.1080/10641963.2016.1210623
Ahmetov I.I., Astratenkova I.V., Rogozkin V.A. Association of a PPARD Polymorphism with Human Physical Performance. Mol. Biol., 2007, vol. 41, no. 5, pp. 776–780. DOI: 10.1134/S002689330705010X