Prenatal Effect of Manganese on the Serum Level of Acetylcholinesterase in Rats

Authors

DOI:

https://doi.org/10.37482/2687-1491-Z054

Keywords:

prenatal exposure, heavy metals, manganese, neurotoxic effect, acetylcholinesterase, neurotoxicity biomarkers

Abstract

The prenatal period is critical to the development of the nervous system. In spite of the fact that manganese is an essential element, excessive exposure to this metal can lead to negative postnatal consequences. This paper examined the prenatal effect of manganese sulphate on acetylcholinesterase (AChE) concentration in two generations of rats. For that purpose, female Wistar rats received a basic diet with additional MnSO4 (1433 mg/kg/day) for 28 days before gestation and during gestation (20–26 days). Young offspring of the first generation were tested for behavioural disorders using standardized behavioural assays, and, as a result, male rats with most abnormalities were selected. Firstgeneration female offspring were subsequently used to obtain second-generation offspring, from which males with behavioural disorders were also selected. Blood samples were taken from the selected animals at the age of 18 weeks to determine AChE level. The effect of oral exposure to manganese on the body of mother rats was also assessed. The study found that female rats directly exposed to MnSO4 tended to have higher AChE levels. Statistically significant changes in the level of this enzyme were observed in first-generation animals: their first quartile was 22 % greater than the third quartile of the group that had not been prenatally exposed (p = 0.012). Second-generation animals tended to a have higher blood AChE concentration compared to intact animals. Thus, the research demonstrated that prenatal exposure to manganese sulphate affects AChE level both in the maternal body and in several generations of offspring. 
For citation: Notova S.V., Karimov I.F., Kazakova T.V., Marshinskaya O.V. Prenatal Effect of Manganese on the Serum Level of Acetylcholinesterase in Rats. Journal of Medical and Biological Research, 2021, vol. 9, no. 2, pp. 163–170. DOI: 10.37482/2687-1419-Z054

Downloads

Download data is not yet available.

References

Bjørklund G., Chartrand M.S., Aaseth J. Manganese Exposure and Neurotoxic Effects in Children // Environ. Res. 2017. Vol. 155. P. 380–384. DOI: 10.1016/j.envres.2017.03.003

Horning K.J., Caito S.W., Tipps K.G., Bowman A.B., Aschner M. Manganese Is Essential for Neuronal Health // Annu. Rev. Nutr. 2015. Vol. 35. Р. 71–108. DOI: 10.1146/annurev-nutr-071714-034419

Bailey L.A., Kerper L.E., Goodman J.E. Derivation of an Occupational Exposure Level for Manganese in Welding Fumes // Neurotoxicology. 2018. Vol. 64. P. 166–176. DOI: 10.1016/j.neuro.2017.06.009

Bouabid S., Tinakoua A., Lakhdar-Ghazal N., Benazzouz A. Manganese Neurotoxicity: Behavioral Disorders Associated with Dysfunctions in the Basal Ganglia and Neurochemical Transmission // J. Neurochem. 2016. Vol. 136, № 4. Р. 677–691. DOI: 10.1111/jnc.13442

Sarkar S., Malovic E., Harischandra D.S., Ngwa H.A., Ghosh A., Hogan C., Rokad D., Zenitsky G., Jin H., Anantharam V., Kanthasamy A.G., Kanthasamy A. Manganese Exposure Induces Neuroinflammation by Impairing Mitochondrial Dynamics in Astrocytes // Neurotoxicology. 2018. Vol. 64. Р. 204–218. DOI: 10.1016/j.neuro.2017.05.009

Peres T.V., Schettinger M.R., Chen P., Carvalho F., Avila D.S., Bowman A.B., Aschner M. Manganese-Induced Neurotoxicity: A Review of Its Behavioral Consequences and Neuroprotective Strategies // BMC Pharmacol. Toxicol. 2016. Vol. 17, № 1. Art. № 57. DOI: 10.1186/s40360-016-0099-0

Henn B.С., Bellinger D.C., Hopkins M.R., Coull B.A., Ettinger A.S., Jim R., Hatley E., Christiani D.C., Wright R.O. Maternal and Cord Blood Manganese Concentrations and Early Childhood Neurodevelopment Among Residents Near a Mining-Impacted Superfund Site // Environ. Health Perspect. 2017 Vol. 125, № 6. Art. № 067020. DOI: 10.1289/EHP925

Rahman A., Kumarathasan P., Gomes J. Infant and Mother Related Outcomes from Exposure to Metals with Endocrine Disrupting Properties During Pregnancy // Sci. Total Environ. 2016. Vol. 569–570. P. 1022–1031. DOI: 10.1016/j.scitotenv.2016.06.134

Lionetto M.G., Caricato R., Calisi A., Giordano M.E., Schettino T. Acetylcholinesterase as a Biomarker in Environmental and Occupational Medicine: New Insights and Future Perspectives // Biomed. Res. Int. 2013. Vol. 2013. Art. № 321213. DOI: 10.1155/2013/321213

Kacholi D.S., Sahu M. Levels and Health Risk Assessment of Heavy Metals in Soil, Water, and Vegetables of Dar es Salaam, Tanzania // J. Chem. 2018. Vol. 2018. Art. № 1402674. DOI: 10.1155/2018/1402674

Chtourou Y., Fetoui H., Garoui el M., Boudawara T., Zeghal N. Improvement of Cerebellum Redox States and Cholinergic Functions Contribute to the Beneficial Effects of Silymarin Against Manganese-Induced Neurotoxicity // Neurochem. Res. 2012. Vol. 37, № 3. Р. 469–479. DOI: 10.1007/s11064-011-0632-x

Santos D., Milatovic D., Andrade V., Batoreu M.C., Aschner M., Marreilha dos Santos A.P. The Inhibitory Effect of Manganese on Acetylcholinesterase Activity Enhances Oxidative Stress and Neuroinflammation in the Rat Brain // Toxicology. 2012. Vol. 292, № 2-3. Р. 90–98. DOI: 10.1016/j.tox.2011.11.017

Fernsebner K., Zorn J., Kanawati B., Walker A., Michalke B. Manganese Leads to an Increase in Markers of Oxidative Stress as well as to a Shift in the Ratio of Fe(II)/(III) in Rat Brain Tissue // Metallomics. 2014. Vol. 6, № 4. Р. 921–931. DOI: 10.1039/c4mt00022f

Martins A.C. Jr., Morcillo P., Ijomone O.M., Venkataramani V., Harrison F.E., Lee E., Bowman A.B., Aschner M. New Insights on the Role of Manganese in Alzheimer’s Disease and Parkinson’s Disease // Int. J. Environ. Res. Public Health. 2019. Vol. 16, № 19. Art. № 3546. DOI: 10.3390/ijerph16193546

Calabresi P., Ammassari-Teule M., Gubellini P., Sancesario G., Morello M., Centonze D., Marfia G.A., Saulle E., Passino E., Picconi B., Bernardi G. A Synaptic Mechanism Underlying the Behavioral Abnormalities Induced by Manganese Intoxication // Neurobiol. Dis. 2001. Vol. 8, № 3. Р. 419–432. DOI: 10.1006/nbdi.2000.0379

Maccani J.Z.J., Koestler D.C., Houseman E.A., Armstrong D.A., Marsit C.J., Kelsey K.T. DNA Methylation Changes in the Placenta Are Associated with Fetal Manganese Exposure // Reprod. Toxicol. 2015. Vol. 57. P. 43–49. DOI: 10.1016/j.reprotox.2015.05.002

Bowman A.B., Kwakye G.F., Herrero Hernández E., Aschner M. Role of Manganese in Neurodegenerative Diseases // J. Trace Elem. Med. Biol. 2011. Vol. 25, № 4. Р. 191–203. DOI: 10.1016/j.jtemb.2011.08.144

Tuschl K., Mills P.B., Clayton P.T. Manganese and the Brain // Int. Rev. Neurobiol. 2013. Vol. 110. P. 277–312. DOI: 10.1016/B978-0-12-410502-7.00013-2

Michalke B. Manganese Speciation Related to Neurotoxicity in Humans // Metal Ion in Stroke / ed. by Y.V. Li, J.H. Zhang. New York: Springer, 2012. Р. 569–589. DOI: 10.1007/978-1-4419-9663-3_28

Published

2021-05-18

How to Cite

Нотова, С. В., Каримов, И. Ф., Казакова, Т. В., & Маршинская, О. В. (2021). Prenatal Effect of Manganese on the Serum Level of Acetylcholinesterase in Rats. Journal of Medical and Biological Research, 9(2), 163–170. https://doi.org/10.37482/2687-1491-Z054