Prospects of Using the CRISPR/Cas9 System for Treating and Modelling Cardiovascular Diseases (Review)

Authors

DOI:

https://doi.org/10.37482/2687-1491-Z059

Keywords:

CRISPR/Cas9, cardiovascular diseases, genetics, genome editing

Abstract

Methods of genetic editing and the ability to control it have made it possible to achieve significant progress in medicine, in particular, in the study of the pathogenesis of various diseases, including those of cardiovascular aetiology. One of the editing methods is the CRISPR/Cas9 technology. CRISPR is a family of DNA sequences found in the genomes of bacteria and other prokaryotes, while Cas9 is an endonuclease that cleaves the target foreign sequence. It should be noted that cardiovascular disease is one of the leading causes of death worldwide. A fairly large number of cardiovascular diseases, such as hypertrophic cardiomyopathy and long and short QT syndromes, are hereditary. This fact significantly complicates the process of treating these pathologies. However, it also allows us to use CRISPR/Cas9  to detect and edit genes in order to alleviate the clinical picture. At the same time, genetic engineering and its methods in general are a rather poorly studied area. Moreover, in spite of a significant number of experimental works on the effects of CRISPR on the cardiovascular system, there is a profound lack of comprehensive reviews that would combine all the positive and negative aspects of the use of CRISPR/Cas9 in the treatment of hereditary cardiovascular diseases. This article discusses various options of using CRISPR editing directly in clinical practice, as well as in modelling cardiovascular diseases. Based on the data obtained, we were able to identify the areas in which application of CRISPR/Cas9 is the most appropriate and shows the best result.
For citation: Namiot E.D., Kuznetsova V.S., Kustavinova E.V., Kartashkina N.L. Prospects of Using the CRISPR/Cas9 System for Treating and Modelling Cardiovascular Diseases (Review). Journal of Medical and Biological Research, 2021, vol. 9, no. 2, pp. 213–225. DOI: 10.37482/2687-1491-Z059

Downloads

Download data is not yet available.

References

Kim J.G., Garrett S., Wei Y., Graveley B.R., Terns M.P. CRISPR DNA Elements Controlling Site-Specific Spacer Integration and Proper Repeat Length by a Type II CRISPR–Cas System // Nucl. Acids Res. 2019. Vol. 47, № 16. Р. 8632–8648. DOI: 10.1093/nar/gkz677

Marraffini L.A., Sontheimer E.J. CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA // Science. 2008. Vol. 322, № 5909. Р. 1843–1845. DOI: 10.1126/science.1165771

Pougach K., Semenova E., Bogdanova E., Datsenko K.A., Djordjevic M., Wanner B.L., Severinov K. Transcription, Processing and Function of CRISPR Cassettes in Escherichia coli // Mol. Microbiol. 2010. Vol. 77, № 6. Р. 1367–1379. DOI: 10.1111/j.1365-2958.2010.07265.x

Sander J.D., Joung J.K. CRISPR-Cas Systems for Editing, Regulating and Targeting Genomes // Nat. Biotechnol. 2014. Vol. 32, № 4. Р. 347–355. DOI: 10.1038/nbt.2842

Nabel E.G. Cardiovascular Disease // N. Engl. J. Med. 2003. Vol. 349, № 1. Р. 60–72. DOI: 10.1056/NEJMra035098

Silas S., Makarova K.S., Shmakov S., Páez-Espino D., Mohr G., Liu Y., Davison M., Roux S., Krishnamurthy S.R., Fu B.X.H., Hansen L.L., Wang D., Sullivan M.B., Millard A., Clokie M.R., Bhaya D., Lambowitz A.M., Kyrpides N.C., Koonin E.V., Fire A.Z. On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires // mBio. 2017. Vol. 8, № 4. Art. № e00897-17. DOI: 10.1128/mBio.00897-17

Xie C., Zhang Y.P., Song L., Luo J., Qi W., Hu J., Lu D., Yang Z., Zhang J., Xiao J., Zhou B., Du J.L., Jing N., Liu Y., Wang Y., Li B.L., Song B.L., Yan Y. Genome Editing with CRISPR/Cas9 in Postnatal Mice Corrects PRKAG2 Cardiac Syndrome // Cell Res. 2016. Vol. 26. Р. 1099–1111. DOI: 10.1038/cr.2016.101

Ben Jehuda R., Shemer Y., Binah O. Genome Editing in Induced Pluripotent Stem Cells Using CRISPR/Cas9 // Stem Cell Rev. Rep. 2018. Vol. 14, № 3. Р. 323–336. DOI: 10.1007/s12015-018-9811-3

Ledford H. CRISPR Fixes Disease Gene in Viable Human Embryos // Nature. 2017. Vol. 548, № 7665. Р. 13–14. DOI: 10.1038/nature.2017.22382

Ben Jehuda R., Eisen B., Shemer Y., Mekies L.N., Szantai A., Reiter I., Cui H., Guan K., Haron-Khun S., Freimark D., Sperling S.R., Gherghiceanu M., Arad M., Binah O. CRISPR Correction of the PRKAG2 Gene Mutation in the Patient’s Induced Pluripotent Stem Cell-Derived Cardiomyocytes Eliminates Electrophysiological and Structural Abnormalities // Heart Rhythm. 2018. Vol. 15, № 2. Р. 267–276. DOI: 10.1016/j.hrthm.2017.09.024

Liang P., Sallam K., Wu H., Li Y., Itzhaki I., Garg P., Zhang Y., Vermglinchan V., Lan F., Gu M., Gong T., Zhuge Y., He C., Ebert A.D., Sanchez-Freire V., Churko J., Hu S., Sharma A., Lam C.K., Scheinman M.M., Bers D.M., Wu J.C. Patient-Specific and Genome-Edited Induced Pluripotent Stem Cell-Derived Cardiomyocytes Elucidate Single- Cell Phenotype of Brugada Syndrome // J. Am. Coll. Cardiol. 2016. Vol. 68, № 19. Р. 2086–2096. DOI: 10.1016/j. jacc.2016.07.779

Watkins H., Ashrafian H., Redwood C. Inherited Cardiomyopathies // N. Engl. J. Med. 2011. Vol. 364, № 17. Р. 1643–1656. DOI: 10.1056/NEJMra0902923

van der Velden J., Tocchetti C.G., Varricchi G., Bianco A., Sequeira V., Hilfiker-Kleiner D., Hamdani N., Leite- Moreira A.F., Mayr M., Falcão-Pires I., Thum T., Dawson D.K., Balligand J.L., Heymans S. Metabolic Changes in Hypertrophic Cardiomyopathies: Scientific Update from the Working Group of Myocardial Function of the European Society of Cardiology // Cardiovasc. Res. 2018. Vol. 114, № 10. Р. 1273–1280. DOI: 10.1093/cvr/cvy147

Green E.M., Wakimoto H., Anderson R.L., Evanchik M.J., Gorham J.M., Harrison B.C., Henze M., Kawas R., Oslob J.D., Rodriguez H.M., Song Y., Wan W., Leinwand L.A., Spudich J.A., McDowell R.S., Seidman J.G., Seidman C.E. A Small-Molecule Inhibitor of Sarcomere Contractility Suppresses Hypertrophic Cardiomyopathy in Mice // Science. 2016. Vol. 351, № 6273. Р. 617–621. DOI: 10.1126/science.aad3456

Cirino A.L., Seidman C.E., Ho C.Y. Genetic Testing and Counseling for Hypertrophic Cardiomyopathy // Cardiol. Clin. 2019. Vol. 37, № 1. Р. 35–43. DOI: 10.1016/j.ccl.2018.08.003

Murphy S.L., Anderson J.H., Kapplinger J.D., Kruisselbrink T.M., Gersh B.J., Ommen S.R., Ackerman M.J., Bos J.M. Evaluation of the Mayo Clinic Phenotype-Based Genotype Predictor Score in Patients with Clinically Diagnosed Hypertrophic Cardiomyopathy // J. Cardiovasc. Transl. Res. 2016. Vol. 9, № 2. Р. 153–161. DOI: 10.1007/s12265-016-9681-5

Marian A.J., Braunwald E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy // Circ. Res. 2017. Vol. 121, № 7. Р. 749–770. DOI: 10.1161/CIRCRESAHA.117.311059

Singer E.S., Ingles J., Semsarian C., Bagnall R.D. Key Value of RNA Analysis of MYBPC3 Splice-Site Variants in Hypertrophic Cardiomyopathy // Circ. Genom. Precis. Med. 2019. Vol. 12, № 1. Art. № e002368. DOI: 10.1161/CIRCGEN.118.002368

Kaul S., Heitner S.B., Mitalipov S. Sarcomere Gene Mutation Correction // Eur. Heart J. 2018. Vol. 39, № 17. Р. 1506–1507. DOI: 10.1093/eurheartj/ehy179

Grassmann F., Kiel C., den Hollander A.I., Weeks D.E., Lotery A., Cipriani V., Weber B.H.F; International Age-Related Macular Degeneration Genomics Consortium (IAMDGC). Y Chromosome Mosaicism Is Associated with Age-Related Macular Degeneration // Eur. J. Hum. Genet. 2019. Vol. 27, № 1. Р. 36–41. DOI: 10.1038/s41431-018-0238-8

Mehravar M., Shirazi A., Nazari M., Banan M. Mosaicism in CRISPR/Cas9-Mediated Genome Editing // Dev. Biol. 2019. Vol. 445, № 2. Р. 156–162. DOI: 10.1016/j.ydbio.2018.10.008

Tanihara F., Hirata M., Nguyen N.T., Le Q.A., Hirano T., Otoi T. Effects of Concentration of CRISPR/Cas9 Components on Genetic Mosaicism in Cytoplasmic Microinjected Porcine Embryos // J. Reprod. Dev. 2019. Vol. 65, № 3. Р. 209–214. DOI: 10.1262/jrd.2018-116

Lander E.S., Baylis F., Zhang F., Charpentier E., Berg P., Bourgain C., Friedrich B., Joung J.K., Li J., Liu D., Naldini L., Nie J.B., Qiu R., Schoene-Seifert B., Shao F., Terry S., Wei W., Winnacker E.L. Adopt a Moratorium on Heritable Genome Editing. 2019. Vol. 567, № 7747. Р. 165–168. DOI: 10.1038/d41586-019-00726-5

Strecker J., Jones S., Koopal B., Schmid-Burgk J., Zetsche B., Gao L., Makarova K.S., Koonin E.V., Zhang F. Engineering of CRISPR-Cas12b for Human Genome Editing // Nat. Commun. 2019. Vol. 10. Art. № 212. DOI: 10.1038/s41467-018-08224-4

Papasavva P., Kleanthous M., Lederer C.W. Rare Opportunities: CRISPR/Cas-Based Therapy Development for Rare Genetic Diseases // Mol. Diagn. Ther. 2019. Vol. 23, № 2. Р. 201–222. DOI: 10.1007/s40291-019-00392-3

Berns K.I., Srivastava A. Next Generation of Adeno-Associated Virus Vectors for Gene Therapy for Human Liver Diseases // Gastroenterol. Clin. North Am. 2019. Vol. 48, № 2. Р. 319–330. DOI: 10.1016/j.gtc.2019.02.005

Published

2021-05-19

How to Cite

Намиот, Е. Д., Кузнецова, В. С., Куставинова, Е. В., & Карташкина, Н. Л. (2021). Prospects of Using the CRISPR/Cas9 System for Treating and Modelling Cardiovascular Diseases (Review). Journal of Medical and Biological Research, 9(2), 213–225. https://doi.org/10.37482/2687-1491-Z059