Application of Silicone Coating for Obtaining Cell Spheroids Using the Hanging Drop Method

Authors

DOI:

https://doi.org/10.37482/2687-1491-Z089

Keywords:

hanging drop method, BT-474 cell line, breast cancer, cell spheroid, silicone elastomer

Abstract

In modern experimental oncology, 3D cell cultures have become particularly important, as they provide more relevant results compared to traditional 2D cultures. The problem of obtaining relevant cell models remains urgent for the study of breast cancer. One of the most common techniques for obtaining a 3D culture is the hanging drop method. Researchers are constantly developing its modifications to reduce variations in the shape and size of the resulting cell spheroids. One of the ways to solve this problem is to apply a hydrophobic coating to the surface of cell culture plastics. Silicones or Parafilm® laboratory films are often used for this purpose. As a result, the curvature of the drop surface increases, which leads to accelerated aggregation of cells in the centre of the drop. The purpose of this research was to evaluate the possibility of applying a coating made of the silicone elastomer SIEL 159-330 (Russia) to modify the hanging drop method. Materials and methods. We used the SIEL 159-330 coating cured at a temperature lower than that recommended by the manufacturer and investigated its cytotoxic properties as well as its effect on the formation of cell spheroids in a hanging drop. The material for the study was the BT-474 breast cancer cell line. Results. The research found that the tested elastomer has no effect on cell viability. At the same time, SIEL 159-330, compared to polystyrene, significantly reduces the time of cell aggregate formation in the lower part of the drop. In addition, cell spheroids of the breast cancer culture obtained on the SIEL 159-330 coating vary less in shape and size than spheroids obtained on the polystyrene or Parafilm coating.

Downloads

Download data is not yet available.

References

Кит О.И., Шатова Ю.С., Новикова И.А., Владимирова Л.Ю., Ульянова Е.П., Комова Е.А., Кечеджиева Э.Э. Экспрессия Р53 и BCL2 при различных подтипах рака молочной железы // Фундам. исследования. 2014. № 10-1. С. 85–88.

Souza A.G., Silva I.B.B., Campos-Fernandez E., Barcelos L.S., Souza J.B., Marangoni K., Goulart L.R., Alonso-Goulart V. Comparative Assay of 2D and 3D Cell Culture Models: Proliferation, Gene Expression and Anticancer Drug Response // Curr. Pharm. Des. 2018. Vol. 24, № 15. Р. 1689–1694. DOI: 10.2174/1381612824666180404152304

Межевова И.В., Ситковская А.О., Кит О.И. Первичные культуры опухолевых клеток: современные методы получения и поддержания in vitro // Юж.-рос. онкол. журн. 2020. Т. 1, № 3. С. 36–49. DOI: 10.37748/2687-0533-2020-1-3-4

Costa E.C., Moreira A.F., de Melo-Diogo D., Gaspar V.M., Carvalho M.P., Correia I.J. 3D Tumor Spheroids: An Overview on the Tools and Techniques Used for Their Analysis // Biotechnol. Adv. 2016. Vol. 34, № 8. Р. 1427–1441. DOI: 10.1016/j.biotechadv.2016.11.002

Тимофеева С.В., Шамова Т.В., Ситковская А.О. 3D-биопринтинг микроокружения опухоли: последние достижения // Журн. общей биологии. 2021. Т. 82, № 5. С. 389–400. DOI: 10.31857/s0044459621050067

Nunes A.S., Barros A.S., Costa E.C., Moreira A.F., Correia I.J. 3D Tumor Spheroids as in vitro Models to Mimic in vivo Human Solid Tumors Resistance to Therapeutic Drugs // Biotechnol. Bioeng. 2019. Vol. 116, № 1. Р. 206–226. DOI: 10.1002/bit.26845

Kelm J.M., Timmins N.E., Brown C.J., Fussenegger M., Nielsen L.K. Method for Generation of Homogeneous Multicellular Tumor Spheroids Applicable to a Wide Variety of Cell Types // Biotechnol. Bioeng. 2003. Vol. 83, № 2. Р. 173–180. DOI: 10.1002/bit.10655

Oliveira M.B., Neto A.I., Correia C.R., Rial-Hermida M.I., Alvarez-Lorenzo C., Mano J.F. Superhydrophobic Chips for Cell Spheroids High-Throughput Generation and Drug Screening // ACS Appl. Mater. Interfaces. 2014. № 6. Р. 9488–9495. DOI: 10.1021/am5018607

Fu J.J., Lv X.H., Wang L.X., He X., Li Y., Yu L., Li C.M. Cutting and Bonding Parafilm® to Fast Prototyping Flexible Hanging Drop Chips for 3D Spheroid Cultures // Cell. Mol. Bioeng. 2021. Vol. 14. Р. 187–199. DOI: 10.1007/s12195-020-00660-x

Kuo C.-T., Wang J.-Y., Lin Y.-F., Wo A.M., Chen B.P.C., Lee H. Three-Dimensional Spheroid Culture Targeting Versatile Tissue Bioassays Using a PDMS-Based Hanging Drop Array // Sci. Rep. 2017. Vol. 7. Art. № 4363. DOI: 10.1038/s41598-017-04718-1

Краев И.Д., Попков О.В., Шульдешов Е.М., Сорокин А.Е., Юрков Г.Ю. Перспективы использования кремнийорганических полимеров при создании современных материалов и покрытий различных назначений // Тр. ВИАМ. 2017. № 12(60). С. 48–62. DOI: 10.18577/2307-6046-2017-0-12-5-5

Нанушьян С.Р. Кремнийорганические материалы ускоренной вулканизации: история создания и развития направления // Хим. промышленность сегодня. 2015. № 11. С. 21–26.

Guo X., Chen Y., Ji W., Chen X., Li C., Ge R. Enrichment of Cancer Stem Cells by Agarose Multi-Well Dishes and 3D Spheroid Culture // Cell Tissue Res. 2019. Vol. 375, № 2. Р. 397–408. DOI: 10.1007/s00441-018-2920-0

Wan L., Neumann C.A., LeDuc P.R. Tumor-on-a-Chip for Integrating a 3D Tumor Microenvironment: Chemical and Mechanical Factors // Lab. Chip. 2020. № 5. Р. 873–888. DOI: 10.1039/c9lc00550a

Published

2022-02-22

How to Cite

Filippova С., Sitkovskaya А. О., Vashchenko Л. Н., Kechedzhieva Э. Э., Dashkova И. Р., Ausheva Т. В., & Przhedetskiy Ю. В. (2022). Application of Silicone Coating for Obtaining Cell Spheroids Using the Hanging Drop Method. Journal of Medical and Biological Research, 10(1), 44–51. https://doi.org/10.37482/2687-1491-Z089

Issue

Section

MEDICAL AND BIOLOGICAL SCIENCES