The Use of Nonlinear Parameters of Heart Rate Variability for Stress Detection
DOI:
https://doi.org/10.37482/2687-1491-Z064Keywords:
heart rate variability, stress diagnosis, logistic regression, linear discriminant analysisAbstract
This paper presents a stress detection algorithm using heart rate variability (HRV) parameters. Five-minute electrocardiograms were recorded at rest and under exam stress (252 students were involved). The determined HRV parameters were applied to detect stress by means of several classification algorithms. We analysed linear indices in the time (standard deviation of NN intervals (SDNN) and root mean square of successive RR interval differences (RMSSD)) and frequency domains (low frequency (LF) and high frequency (HF) power as well as LF/HF ratio). To study nonlinear HRV indices, we evaluated approximate entropy (ApEn), sample entropy (SampEn), α1 (DFA1) and α2 (DFA2) scaling exponents, correlation dimension D2, and recurrence plot quantification measures (recurrence rate (REC), mean diagonal line length (Lmean), maximum diagonal line length (Lmax), determinism (DET), and Shannon entropy (ShanEn)). Receiver operating characteristic (ROC) was used to test the performance of the classifiers derived from HRV. The highest area under the ROC curve (AUC), sensitivity, and specificity were found for mean RR-interval, DFA1, DFA2, RMSSD, and Lmax. These parameters were used for stress/rest classification with the help of algorithms that are common in clinical and physiological applications, i.e. logistic regression (LR) and linear discriminant analysis (LDA). Classification performance for stress was quantified using accuracy, sensitivity and specificity measures. The LR achieved an accuracy of 68.25 % at an optimal cutoff value of 0.57. LDA
determined stress with 67.46 % accuracy. Thus, HRV parameters can serve as an objective tool for stress detection.
For citation: Dimitriev D.A., Saperova E.V., Dimitriev A.D., Salimov E.R. The Use of Nonlinear Parameters of Heart Rate Variability for Stress Detection. Journal of Medical and Biological Research, 2021, vol. 9, no. 3, pp. 265–274. DOI: 10.37482/2687-1491-Z064
Downloads
References
Valenza G., Sclocco R., Duggento A., Passamonti L., Napadow V., Barbieri R., Toschi N. The Central Autonomic Network at Rest: Uncovering Functional MRI Correlates of Time-Varying Autonomic Outflow // Neuroimage. 2019. Vol. 197. P. 383–390. DOI: 10.1016/j.neuroimage.2019.04.075
Одинак М.М., Шустов Е.Б., Коломенцев С.В. Методология инструментального изучения вегетативной нервной системы в норме и патологии // Вестн. Рос. воен.-мед. акад. 2012. № 2(38). С. 145–152.
Hughes B.M., Lü W., Howard S. Cardiovascular Stress-Response Adaptation: Conceptual Basis, Empirical Findings, and Implications for Disease Processes // Int. J. Psychophysiol. 2018. Vol. 131. P. 4–12. DOI: 10.1016/j.ijpsycho.2018.02.003
Smith R., Thayer J.F., Khalsa S.S., Lane R.D. The Hierarchical Basis of Neurovisceral Integration // Neurosci. Biobehav. Rev. 2017. Vol. 75. P. 274–296. DOI: 10.1016/j.neubiorev.2017.02.003
Миронова Т.Ф., Миронов В.А., Обухова Т.Ю., Шмонина О.Г., Мордас Е.Ю., Кудрина К.С., Милованкина Н.О., Милащенко А.И. Вегетативная регуляция сердечного ритма (обзор) // Урал. мед. журн. 2018. № 10(165). С. 90–105. DOI: 10.25694/URMJ.2018.10.28
Silva L.E.V., Lataro R.M., Castania J.A., Silva C.A.A., Salgado H.C., Fazan R. Jr., Porta A. Nonlinearities of Heart Rate Variability in Animal Models of Impaired Cardiac Control: Contribution of Different Time Scales // J. Appl. Physiol. (1985). 2017. Vol. 123, № 2. P. 344–351. DOI: 10.1152/japplphysiol.00059.2017
Silva L.E.V., Lataro R.M., Castania J.A., da Silva C.A.A., Valencia J.F., Murta L.O. Jr., Porta A. Multiscale Entropy Analysis of Heart Rate Variability in Heart Failure, Hypertensive, and Sinoaortic-Denervated Rats: Classical and Refined Approaches // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016. Vol. 311, № 1. Р. 150–156. DOI: 10.1152/ajpregu.00076.2016
Pincus S.M. Approximate Entropy as a Measure of System Complexity // Proc. Natl. Acad. Sci. USA. 1991. Vol. 88, № 6. P. 2297–2301. DOI: 10.1073/pnas.88.6.2297
Richman J.S., Moorman J.R. Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy // Am. J. Physiol. Heart Circ. Physiol. 2000. Vol. 278, № 6. P. 2039–2049. DOI: 10.1152/ajpheart.2000.278.6.H2039
Costa M.D., Goldberger A.L. Generalized Multiscale Entropy Analysis: Application to Quantifying the Complex Volatility of Human Heartbeat Time Series // Entropy. 2015. Vol. 17, № 3. Р. 1197–1203. DOI: 10.3390/e17031197
Brindle R.C., Ginty A.T., Phillips A.C., Fisher J.P., McIntyre D., Carroll D. Heart Rate Complexity: A Novel Approach to Assessing Cardiac Stress Reactivity // Psychophysiology. 2016. Vol. 53. P. 465–472. DOI: 10.1111/psyp.12576
Pham T.D. Fuzzy Recurrence Plots // Fuzzy Recurrence Plots and Networks with Applications in Biomedicine. Cham: Springer, 2020. Р. 29–55.
Iwaniec J., Iwaniec M. Application of Recurrence-Based Methods to Heart Work Analysis // International Congress on Technical Diagnostic / ed. by A. Timofiejczuk, B. Łazarz, F. Chaari, R. Burdzik. Cham: Springer, 2016. Р. 343–352. DOI: 10.1007/978-3-319-62042-8_31
Kitlas Golińska A. Detrended Fluctuation Analysis (DFA) in Biomedical Signal Processing: Selected Examples // Stud. Logic Gramm. Rhetor. 2012. Vol. 29. P. 107–115.
Uçar M.K., Bozkurt M.R., Bilgin C., Polat K. Automatic Sleep Staging in Obstructive Sleep Apnea Patients Using Photoplethysmography, Heart Rate Variability Signal and Machine Learning Techniques // Neural Comput. Appl. 2018. Vol. 29, № 8. P. 1–16. DOI: 10.1007/s00521-016-2365-x
Melillo P., Bracale M., Pecchia L. Nonlinear Heart Rate Variability Features for Real-Life Stress Detection. Case Study: Students Under Stress Due to University Examination // Biomed. Eng. Online. 2011. Vol. 10, № 1. Art. № 96. DOI: 10.1186/1475-925X-10-96
Нотова С.В., Давыдова Н.О., Черемушникова И.И. Комплексный подход к определению уровня адаптации к условиям университета у студентов разных социальных групп // Вестн. Сев. (Арктич.) федер. ун-та. Сер.: Мед.-биол. науки. 2014. № 2. С. 56–62.
Геворкян Э.С., Даян А.В., Адамян Ц.И., Григорян С.С., Минасян С.М. Влияние экзаменационного стресса на психофизиологические показатели и ритм сердца студентов // Журн. высш. нерв. деятельности им. И.П. Павлова. 2003. Т. 53, № 1. С. 46–50.
Mulcahy J.S., Larsson D.E.О., Garfinkel S.N., Critchley H.D. Heart Rate Variability as a Biomarker in Health and Affective Disorders: A Perspective on Neuroimaging Studies // Neuroimage. 2019. Vol. 202. Art. № 116072. DOI: 10.1016/j.neuroimage.2019.116072
Silva L.E.V., Silva C.A.A., Salgado H.C., Fazan R. Jr. The Role of Sympathetic and Vagal Cardiac Control on Complexity of Heart Rate Dynamics // Am. J. Physiol. Heart Circ. Physiol. 2017. Vol. 312. P. Н469–Н477. DOI: 10.1152/ajpheart.00507.2016
Muaremi A., Arnrich B., Tröster G. Towards Measuring Stress with Smartphones and Wearable Devices During Workday and Sleep // BioNanoScience. 2013. Vol. 3. P. 172–183. DOI: 10.1007/s12668-013-0089-2
Sun G., Shinba T., Kirimoto T., Matsui T. An Objective Screening Method for Major Depressive Disorder Using Logistic Regression Analysis of Heart Rate Variability Data Obtained in a Mental Task Paradigm // Front. Psychiatry. 2016. Vol. 7. Art. № 180. DOI: 10.3389/fpsyt.2016.00180