Correlation Between the Hormonal Status, Red Blood Cell Parameters and Cardiorespiratory Endurance in Young Male Athletes and Non-Athletes
DOI:
https://doi.org/10.37482/2687-1491-Z097Keywords:
hormonal status, cortisol, red blood cells, young men, motor activity, cardiorespiratory enduranceAbstract
The aim of this paper was to study red blood cell parameters and levels of thyroid-stimulating hormone (TSH), free thyroxine (FT4) and cortisol, as well as their correlations in young male athletes and non-athletes, depending on their cardiorespiratory endurance. Materials and methods. The study involved 18 athletes (weightlifting, kickboxing) with the ranks ranging from First-Class Sportsman to Candidate for Master of Sport and 38 non-athletes. Hormone concentrations in the blood (cortisol, TSH, FT4) and blood parameters (haemoglobin, red blood cell count (RBC), their mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC) and haematocrit (НСТ)) were determined. The subjects’ physical endurance was assessed by calculating the cardiorespiratory index (heart rate divided by the respiratory rate). Results. In young men not involved in sports, no statistically significant differences between red blood cell parameters and hormonal status depending on the cardiorespiratory index were observed. At the same time, athletes with low exercise tolerance had statistically significantly lower MCV, MCHC, FT4, and TSH as well as elevated cortisol levels compared to endurance athletes. In young male non-athletes, we established an inverse correlation of TSH with RBC (r = –0.27) and HCT (r = –0.31) as well as of FT4 with RBC (r = –0.35), HCT (r = –0.28) and cardiorespiratory index at rest (r = 0.29). In athletes, cortisol correlated with exercise tolerance (r = 0.74), while FT4 correlated with cardiorespiratory index after exercise (r = 0.69). Thus, a decrease in thyroxine and an increase in cortisol blood levels in athletes correlate with lower cardiorespiratory endurance and exercise tolerance, while in non-athletes, with the activation of the erythropoietic function.
Downloads
References
Chicharro J.L., Hoyos J., Bandrés F., Terrados N., Fernández B., Lucía A. Thyroid Hormone Levels During a 3-Week Professional Road Cycling Competition // Horm. Res. 2001. Vol. 56. P. 159–164. DOI: 10.1159/000048112
Moore A.W., Timmerman S., Brownlee K.K., Rubin D.A., Hackney A.C. Strenuous, Fatiguing Exercise: Relationship of Cortisol to Circulating Thyroid Hormones // Int. J. Endocrinol. Metab. 2005. Vol. 3, № 1. P. 18–24.
Hackney A.C. Thyroid Axis, Prolactin, and Exercise // Hormone Use and Abuse by Athletes / ed. by E. Ghigo, F. Lanfranco, C.J. Strasburger. Stuttgart: Springer-Verlag Publisher, 2011. Vol. 29. P. 17–24.
Ciloglu F., Peker I., Pehlivan A., Karacabey K., Ilhan N., Saygin O., Ozmerdivenli R. Exercise Intensity and Its Effects on Thyroid Hormones // Neuro Endocrinol. Lett. 2005. Vol. 26, № 6. P. 830–834.
Hackney A.C., Walz E.A. Hormonal Adaptation and the Stress of Exercise Training: The Role of Glucocorticoids // Trends Sport Sci. 2013. Vol. 20, № 4. P. 165–171.
Banfi G., Colombini A., Lombardi G., Lubkowska A. Metabolic Markers in Sports Medicine // Adv. Clin. Chem. 2012. Vol. 56. P. 1–54. DOI: 10.1016/b978-0-12-394317-0.00015-7
Викулов А.Д., Маргазин В.А., Бойков В.Л. Диаметр эритроцитов как надежный маркер текущего функционального состояния организма и физической работоспособности спортсменов // Лечеб. физкультура и спортив. медицина. 2015. № 1(127). С. 10–14.
Miller G.D., Beharry A., Teramoto M., Lai A., Willick S.E., Eichner D. Hematological Changes Following an Ironman Triathlon: An Antidoping Perspective // Drug Test. Anal. 2019. Vol. 11, № 11-12. P. 1747–1754. DOI: 10.1002/dta.2724
Parks R.B., Hetzel S.J., Brooks M.A. Iron Deficiency and Anemia Among Collegiate Athletes: A Retrospective Chart Review // Med. Sci. Sports Exerc. 2017. Vol. 49, № 8. P. 1711–1715. DOI: 10.1249/MSS.0000000000001259
Даутова А.З., Хажиева Е.А., Садыкова Л.З., Шамратова В.Г. Морфофункциональные особенности эритроцитов у девушек в зависимости от уровня двигательной активности и наследственного фактора // Человек. Спорт. Медицина. 2020. Т. 20, № 3. С. 25–33. DOI: 10.14529/hsm200303
Даутова А.З., Шамратова В.Г., Воробьева Е.В. Ассоциация полиморфизмов генов АСЕ, СМА1 и BDKRB2 с состоянием кислородтранспортной системы организма у юношей с разным уровнем двигательной активности // Журн. мед.-биол. исследований. 2019. Т. 7, № 3. С. 251–260. DOI: 10.17238/issn2542-1298.2019.7.3.251
Тарасова О.С., Софронова С.И., Гайнуллина Д.К., Борзых А.А., Мартьянов А.А. Регуляция продукции оксида азота эндотелием сосудов при физической нагрузке: роль тиреоидных гормонов // Авиакосм. и экол. медицина. 2015. Т. 49, № 2. С. 55–62.
Hackney A.C., Kallman A., Hosick K.P., Rubin D.A., Battaglini C.L. Thyroid Hormonal Responses to Intensive Interval versus Steady-State Endurance Exercise Sessions // Hormones (Athens). 2012. Vol. 11, № 1. P. 54–60. DOI: 10.1007/BF03401537
Kanaka-Gantenbein C. The Impact of Exercise on Thyroid Hormone Metabolism in Children and Adolescents // Horm. Metab. Res. 2005. Vol. 37, № 9. P. 563–565. DOI: 10.1055/s-2005-870428
Popovic V., Duntas L.H. Leptin, TRH and Ghrelin: Influence on Energy Homeostasis at Rest and During Exercise // Horm. Metab. Res. 2005. Vol. 37, № 9. P. 533–537. DOI: 10.1055/s-2005-870418
Nader E., Monedero D., Robert M., Skinner S., Stauffer E., Cibiel A., Germain M., Hugonnet J., Scheer A., Joly P., Renoux C., Connes P., Égée S. Impact of a 10 km Running Trial on Eryptosis, Red Blood Cell Rheology, and Electrophysiology in Endurance Trained Athletes: A Pilot Study // Eur. J. Appl. Physiol. 2020. Vol. 120, № 1. P. 255–266. DOI: 10.1007/s00421-019-04271-x
Liu C.H., Tseng Y.F., Lai J.I., Chen Y.Q., Wang S.H., Kao W.F., Li L.H., Chiu Y.H., How C.K., Chang W.H. The Changes of Red Blood Cell Viscoelasticity and Sports Anemia in Male 24-hr Ultra-Marathoners // J. Chin. Med. Assoc. 2018. Vol. 81, № 5. P. 475–481. DOI: 10.1016/j.jcma.2017.09.011
Макарова Г.А., Колесникова Н.В., Скибицкий В.В., Барановская И.Б. Диагностический потенциал картины крови у спортсменов: моногр. М.: Спорт, 2020. 256 с.
Montero D., Lundby C. Regulation of Red Blood Cell Volume with Exercise Training // Compr. Physiol. 2018. Vol. 9, № 1. P. 149−164. DOI: 10.1002/cphy.c180004
Гунина Л., Рыбина И., Котляренко Л. Показатели гематологического гомеостаза в оценке функционального состояния спортсменов // Наука в олимп. спорте. 2020. № 3. С. 65–75.