Возрастная динамика структуры надземной фитомассы культур сосны обыкновенной до 25-летного возраста в условиях Западного Хэнтэя (Северная Монголия)
DOI:
https://doi.org/10.37482/0536-1036-2019-5-208Ключевые слова:
лесные культуры, сосна обыкновенная, надземная фитомасса, фракции фитомассы, Западный Хэнтэй, Северная МонголияАннотация
Изучение продуктивности леса является одной из главных задач лесной науки на протяжении последних 170 лет. Выделяются приоритетность и весомость исследований, направленных на выявление наиболее значимого элемента продуктивности древостоев – массы стволовой древесины. Сосна обыкновенная (Pinus sylvestris L.) – основная порода при искусственном восстановлении хвойных и бореальных лесов Монголии, подвергнутых антропогенным воздействиям. Перед нами стояла задача изучить возрастную динамику структуры надземной фитомассы культур сосны обыкновенной в условиях Западного Хэнтэя (Северная Монголия). Объектами служили чистые по составу участки культур сосны обыкновенной, созданные методом посадки, в возрасте от 9 до 25 лет. На временных пробных площадях отбирали по 10 модельных деревьев, которые разделяли на фракции: сухие ветви (сучья), живые ветви, хвоя, кора ствола, древесина ствола. Установлено, что общий запас древостоя в исследуемом возрастном интервале постепенно повышался и к возрасту 25 лет достигал 21,8 м3/га. Масса стволовой древесины в общей надземной фитомассе с возрастом также увеличивалась. В процентном отношении этот показатель изменился от 23,1 % в 9-летних культурах до 47,8 % в 25-летних. Для такой фракции фитомассы, как хвоя, присуща обратная зависимость: процент массы хвои в надземной фитомассе уменьшается от 57,7 % в 9-летних культурах до 15,0 % в 25-летних. Полученные результаты могут быть использованы при формировании базы данных о фитомассе лесов Монголии, а также при проектировании противопожарных мероприятий и прогнозировании численности хвое- и листогрызущих насекомых.
Для цитирования: Цогт З., Дугаржав Ч., Лобанов А.И., Гэрэлбаатар С., Булган-Эрдэнэ Б. Возрастная динамика структуры надземной фитомассы культур сосны обыкновенной до 25-летного возраста в условиях Западного Хэнтэя (Северная Монголия) // Лесн. журн. 2019. № 5. С. 208–215. (Изв. высш. учеб. заведений). DOI: 10.17238/issn0536-1036.2019.5.208
Скачивания
Библиографические ссылки
Бабич Н.А., Гельфанд Е.Д., Мелехов В.И., Клевцов Д.Н. Возрастное изменение показателей надземной фитомассы культур сосны северной подзоны тайги // Лесн. журн. 2012. № 2. С. 50–52. (Изв. высш. учеб. заведений). [Babich N.A., Gelfand E.D., Melekhov V.I., Klevtsov D.N. Age Variability of Superterranean Phytomass Indices of the Homogeneous Scots Pine Stands in the Northern Boreal Subzone. Lesnoy Zhurnal [Forestry Journal], 2012, no. 2, pp. 50–52]. URL: http://lesnoizhurnal.ru/upload/iblock/95c/gber7.pdf
Бабич Н.А., Мерзленко М.Д., Евдокимов И.В. Фитомасса культур сосны и ели в европейской части России. Архангельск: СОЛТИ, 2004. 112 с. [Babich N.A., Merzlenko M.D., Evdokimov I.V. The Above-Ground Phytomass Characteristics of Pine and Spruce Plantations in the European Part of Russia. Arkhangelsk, Solombal’skaya tipografiya Publ., 2004. 112 p.].
Коротков И.А., Цэдэндаш Г. Карта лесов Монгольской Народной Республики (М. 1:1500000). М.: ГУГК МНР и ГУГК СССР, 1983. [Korotkov I.A., Tsedendash G. Forest Map of Mongolian People’s Republic (Scale 1:1500000). Moscow, General Directorate of Geodesy and Cartography of the Mongolian People’s Republic, General Directorate of Geodesy and Cartography of the USSR Publ., 1983].
Краснощеков Ю.Н. Почвенный покров и почвы горных лесов Северной Монголии. Новосибирск: Наука, 2013. 196 с. [Krasnoshchekov Yu.N. Soil Cover and the Soils of Mountain Forests in Northern Mongolia. Novosibirsk, Nauka Publ., 2013. 196 p.].
Лобанов А.И., Булган-Эрдэнэ Б., Цэдэндаш Г., Дугаржав Ч., Доржсурэн Ч., Гэрэлбаатар С., Хадбаатар С. Опыт улучшения качественного состава лесов Монголии // Наука сегодня: теоретические и практические аспекты: материалы междунар. науч.-практ. конф., г. Вологда, 26 дек. 2018 г. Вологда, 2018. С. 15–17. [Lobanov A.I., Bulgan-Erdene B., Tsedendash G., Dugarjav Ch., Dorjsuren Ch., Gerelbaatar S., Khadbaatar S. Experiences for the Stand Quality Improvement in Mongolia. Science Today: Theoretical and Practical Aspects: Proceedings of the Int. Sci-Pract. Conf., Vologda, December 26, 2018. Vologda, 2018, pp. 15–17].
Огиевский В.В., Хиров А.А. Обследование и исследование лесных культур. Л.: ЛТА, 1967. 50 с. [Ogievskiy V.V., Khirov A.A. Inspection and Study of Forest Plantations. Leningrad, LTA Publ., 1967. 50 p.].
Плешиков Ф.И., Ваганов Е.А., Ведрова Э.Ф. и др. Лесные экосистемы Енисейского меридиана. Новосибирск: Изд-во СО РАН, 2002. 356 с. [Pleshikov F.I., Vaganov E.A., Vedrova E.F. et. al. Forest Ecosystems in the Yenisei Meridian. Novosibirsk, SB RAS Publ., 2002. 356 p.].
Семечкина М.Г. Структура фитомассы сосняков. Новосибирск: Наука, 1978. 166 с. [Semechkina M.G. The Phymomass Structure of Pine Forests. Novosibirsk, Nauka Publ., 1978. 166 p.].
Усольцев В.А. Биологическая продуктивность лесов Северной Евразии: методы, база данных и ее приложения. Екатеринбург: УрО РАН, 2007. 636 с. [Usoltsev V.A. Biological Productivity of the Northern Eurasian Forests: Methods, Database and Its Applications. Yekaterinburg, UB RAS Publ., 2007. 636 p.].
Усольцев В.А., Гаврилин Д.С., Часовских В.П., Борников А.В., Норицына Ю.В. География фитомассы, чистой первичной и удельной чистой первичной продукции лиственничников в пределах Евразии // Сиб. лесн. журн. 2014. № 3. С. 76–90. [Usoltsev V.A., Gavrilin D.S., Chasovskikh V.P., Bornikov A.V., Noritsina Yu.V. Geography of Phytomass, Net Primary and Specific Primary Production of Larch Forest within Eurasia. Sibirskij Lesnoj Zurnal [Siberian Journal of Forest Science], 2014, no. 3, pp. 76–90].
Цогт З., Гэрэлбаатар С., Батнасан М., Лобанов А.И. Надземная фитомасса культур Pinus sylvestris L. в условиях Западного Хэнтэя (Монголия) // Ботанические исследования в Сибири. Красноярск: Поликом, 2013. Вып. 21. С. 79–90. [Tsogt Z., Gerelbaatar S., Batnasan M., Lobanov A.I. Above-Ground Phytomass of Scots Pine (Pinus sylvestris L.) Plantations Growing in the Western Khentey Mountains, Mongolia. Botanicheskiye issledovaniya v Sibiri, Krasnoyarsk, 2013, iss. 21, pp. 79–90].
Baishya R., Barik S.K., Upadhaya K. Distribution Pattern of Aboveground Biomass in Natural and Plantation Forests of Humid Tropics in Northeast India. Tropical Ecology, 2009, vol. 50(2), pp. 295–304.
Chatzichristaki Ch., Zagas Th. The Contribution of Natural and Artificial Regeneration at the Restoration of Fire-Affected Peri-Urban Forest of Thessaloniki (Northern Greece). Global NEST Journal, 2017, no. 19. no. 1, pp. 29–36.
Gerelbaatar S. Specifics of the Formation of Scots Pine Plantations in Mongolia: Cand. Biol. Sci. Diss. Ulaanbaatar, 2011. 103 p. (In Mongolian).
Gerelbaatar S., Baatarbileg N. Above-Ground Biomass Allocation in a Planted Forest in a Semi-Arid Region of Northern Mongolia. Journal of Agricultural Science and Technology B, 2013, vol. 3, no. 3, pp. 216–220.
Gerelbaatar S., Batsaikhan G., Tsogtbaatar J., Battulga P., Baatarbileg N., Gradel A. Assessment of Early Survival and Growth of Planted Scots Pine (Pinus sylvestris L.) Seedlings under Extreme Continental Climate Conditions of Northern Mongolia. Journal of Forestry Research, 2019, pp. 1–14. DOI: 10.1007/s11676-019-00935-8
Gerelbaatar S., Byambagerel S., Baatarbileg N., Dugarjav Ch. Effects of Scots Pine (Pinus sylvestris L.) Plantations on Plant Diversity in Northern Mongolia. Mongolian Journal of Biological Sciences, 2018, no. 16(1), pp. 59–70.
Meteorological Reference Book of People’s Republic of Mongolia. Ulaanbaatar, 1971, vol. 1. 319 p. (In Mongolian).
Morhart C., Sheppard J.P., Schuler J.K., Spiecker H. Above-Ground Woody Biomass Allocation and within Tree Carbon and Nutrient Distribution of Wild Cherry (Prunus avium L.) – A Case Study. Forest Ecosystems, 2016, vol. 3, art. 4. DOI: 10.1186/s40663-016-0063-x
Nouvellon Y., Laclau J.P., Epron D., Maire G.L., Bonnefond J.-M., Gonçalves J.L.M., Bouillet J.-P. Production and Carbon Allocation in Monocultures and Mixed-Species Plantations of Eucalyptus grandis and Acacia mangium in Brazil. Tree Physiology, 2012, vol. 32, pp. 680–695. DOI: 10.1093/treephys/tps041
Repola J., Ahnlund Ulvcrona K. Modelling Biomass of Young and Dense Scots Pine (Pinus sylvestris L.) Dominated Mixed Forests in Northern Sweden. Silva Fennica, 2014, vol. 48, no. 5, art. 1190. DOI: 10.14214/sf.1190
Satoo T., Madgwick H.A.I. Forest Biomass. London, Kluwer Acad. Publ., 1982. 160 p.
Tsogtbaatar J. Deforestation and Reforestation Needs in Mongolia. Forest Ecology and Management, 2004, vol. 201, iss. 1, pp. 57–63. DOI: 10.1016/j.foreco.2004.06.011
Tsogtbaatar J. Deforestation and Reforestation of Degraded Forestland in Mongolia. The Mongolian Ecosystem Network. Tokyo, Springer, 2013, pp. 83–98. DOI: 10.1007/978-4-431-54052-6_7
Yang B., Xue W., Yu Sh., Zhou J., Zhang W. Effects of Stand Age on Biomass Allocation and Allometry of Quercus acutissima in the Central Loess Plateau of China. Forests, 2019, vol. 10(1), art. 41. DOI: 10.3390/f10010041
Zhang X., Zhang X., Han H., Shi Zh., Yang X. Biomass Accumulation and Carbon Sequestration in an Age-Sequence of Mongolian Pine Plantations in Horqin Sandy Land, China. Forests, 2019, vol. 10(2), art. 197. DOI: 10.3390/f10020197
Zianis D., Muukkonen P., Mäkipää R., Mencuccini M. Biomass and Stem Volume Equations for Tree Species in Europa. Silva fennica monographs, 2005, no. 4, pp. 1-2, 5-63.