Влияние топологической структуры целлюлозы на процессы ацетилирования и нитрования
DOI:
https://doi.org/10.37482/0536-1036-2023-6-176-189Ключевые слова:
волокна целлюлозы, ацетат целлюлозы, нитрат целлюлозы, бактериальная целлюлоза, растительная целлюлоза, эфиры целлюлозыАннотация
Эфиры целлюлозы активно используются при изготовлении новых полуфабрикатов, препаратов и материалов. Растительное сырье является основным источником для получения производных целлюлозы. Перспективным становится также производство целлюлозы путем микробиологического синтеза. Несмотря на одинаковые пути биосинтеза микрофибрилл, образцы целлюлозы растительного и бактериального происхождения отличаются по ряду структурных особенностей. Цель работы – оценка влияния топологической структуры целлюлозы растительного и бактериального происхождения на процессы ацетилирования и нитрования. В качестве образцов растительной целлюлозы использовали хлопковую и сульфатную целлюлозу. Бактериальную целлюлозу получали в лаборатории с применением смешанного сообщества микроорганизмов в статических условиях на синтетических глюкозных средах. Нитрование целлюлозы проводили смесью концентрированных H2SO4 и HNO3. Содержание азота в полученных образцах определяли ферросульфатным методом. ИК-спектры нитратов целлюлозы регистрировали на инфракрасном фурье-спектрометре Vertex-70 в диапазоне волновых чисел 4000…400 см–1. Ацетилирование целлюлозы осуществляли в среде сверхкритического диоксида углерода в системе сверхкритической флюидной экстракции SFE-5000, Thar Process. В ацетате целлюлозы титриметрически определяли содержание связанной уксусной кислоты, после чего рассчитывали степень замещения.
Посредством электронной и атомно-силовой микроскопии визуализированы волокна растительной целлюлозы и фибриллы бактериальной целлюлозы. Выход нитрата из чистой хлопковой целлюлозы составил 160 %, т. е. степень замещения – 2,20. Нитрат целлюлозы, полученный из бактериальной целлюлозы в аналогичных условиях, имел степень замещения 1,96. Предложен новый метод прямого ацетилирования лиофильно высушенных препаратов бактериальной целлюлозы в среде сверхкритического диоксида углерода, что позволяет осуществлять процесс без кислотного катализатора и при пониженном расходе ацетилирующего агента. Ацетилирование растительной сульфатной целлюлозы показало степень замещения 2,40, для бактериальной целлюлозы – выход диацетилцеллюлозы с содержанием ацетильных групп 50 %, что соответствует степени замещения 2,10. Получение эфиров обусловлено как топохимическими особенностями микрофибрилл, так и кристалличностью материала.
Для цитирования: Вашукова К.С., Терентьев К.Ю., Чухчин Д.Г., Ивахнов А.Д., Пошина Д.Н. Влияние топологической структуры целлюлозы на процессы ацетилирования и нитрования // Изв. вузов. Лесн. журн. 2023. № 6. С. 176–189. https://doi.org/10.37482/0536-1036-2023-6-176-189
Скачивания
Библиографические ссылки
Беллами Л. Инфракрасные спектры сложных молекул / пер. с англ. В.М. Акимова и др.; под ред. и с предисл. Ю.А. Пентина. М.: Иностр. лит., 1963. 590 с. Bellami L. Infrared Spectra of Complex Molecules. Moscow, Foreign literature Publ., 1963. 590 p. (In Russ.).
Болотова К.С., Буюклинская О.В., Чистякова А.С., Травина О.В., Чухчин Д.Г. Получение и оценка токсичности in vivo микрокристаллической целлюлозы бактериального происхождения // Экология человека. 2018. № 2. C. 21–25. Bolotova K.S., Buyuklinskaya O.V., Chistyakova A.S., Travina O.V., Chukhchin D.G. Production and in vivo Toxicity Testing of Microcrystalline Cellulose Derived from Bacterial Cellulose. Ekologiya cheloveka = Human ecology, 2018, no. 2, pp. 21–25. (In Russ.). https://doi.org/10.33396/1728-0869-2018-2-21-25
Болотова К.С., Чухчин Д.Г., Майер Л.В., Гурьянова А.А. Морфологические особенности фибриллярной структуры растительной и бактериальной целлюлозы // Изв. вузов. Лесн. журн. 2016. № 6. С. 153–165. Bolotova K.S., Chukhchin D.G., Majer L.V., Guryanova A.A. Morphological Features of the Fibrillar Structure of Plant and Bacterial Cellulose. Lesnoy Zhurnal = Russian Forestry Journal, 2016, no. 6, pp. 153–165. (In Russ.). https://doi.org/10.17238/issn0536-1036.2016.6.153
Болотова К.С., Выдрина И.В., Чухчин Д.Г., Новожилов Е.В., Синельников И.Г., Рудакова В.А., Терентьев К.Ю., Канарский А.В. Состав сообщества Medusomyces gisevii и свойства синтезируемой им бактериальной целлюлозы // Вестн. технол. ун-та. 2019. Т. 22, № 10. С. 39–43. Bolotova K.S., Vydrina I.V., Chukhchin D.G., Novozhilov E.V., Sinelnikov I.G., Rudakova V.A., Terentyev K.Y., Kanarskiy A.V. Composition of the Medusomyces gisevii Community and the Properties of Bacterial Cellulose Synthesized by Them. Vestnik tekhnologicheskogo universiteta = Bulletin of the Technological University, 2019, vol. 22, no. 10, pp. 39–43. (In Russ.).
Виноградова В.Р., Болотова К.С. Влияние химической и ферментативной обработки на компонентный состав и структуру материала на основе бактериальной целлюлозы // Биотехнологии в химико-лесном комплексе: материалы Междунар. науч. конф., Архангельск, 11–12 сент. 2014 г. Архангельск: САФУ, 2014. С. 118–122. Vinogradova V.R., Bolotova K.S. Influence of Chemical and Enzymatic Treatment on the Component Composition and Structure of Material Based on Bacterial Cellulose. Biotechnologies in the Chemical-Forestry Complex: Proceedings of the Scientific Conf. Arkhangelsk, 2014, pp. 118–122. (In Russ.).
Геньш К.В., Колосов П.В., Базарнова Н.Г. Количественный анализ нитратов целлюлозы методом ИК-Фурье-спектроскопии // Химия раст. сырья. 2010. № 1. С. 63–66. Gensh K.V., Kolosov P.V., Bazarnova N.G. Quantitative Analysis of Cellulose Nitrates by FT-IR Spectroscopy. Khimija Rastitel’nogo Syr’ja = Chemistry of plant raw material, 2010, no. 1, pp. 63–66. (In Russ.).
Ивахнов А.Д., Боголицын К.Г., Скребец Т.Э. Получение вторичного ацетата целлюлозы прямым ацетилированием в среде сверхкритического диоксида углерода // Изв. вузов. Лесн. журн. 2010. № 3. С. 114–119. Ivahnov A.D., Bogolicyn K.G., Skrebec T.E. Preparation of Secondary Cellulose Acetate by Direct Acetylation in Supercritical Carbon Dioxide. Lesnoy Zhurnal = Russian Forestry Journal, 2010, no. 3, pp. 114–119. (In Russ.).
Коваленко В.И. Молекулярно-структурная неоднородность нитратов целлюлозы // Успехи химии. 1995. Т. 64, № 8. С. 803–817. Kovalenko V.I. Molecular Structural Heterogeneity of Cellulose Nitrates. Uspekhi himii = Russian Chemical Reviews, 1995, vol. 64, no. 8, pp. 803–817. (In Russ.).
Панченко О.А., Титова О.И. Проблемы и достижения при получении нитратов целлюлозы // Химия раст. сырья. 2005. № 3. С. 85–88. Panchenko O.A., Titova O.I. Problems and Achievements in the Production of Cellulose Nitrates. Khimija Rastitel’nogo Syr’ja = Chemistry of plant raw material, 2005, no. 3, pp. 85–88. (In Russ.).
Bahmid N.A., Syamsu K., Maddu A. Production of Cellulose Acetate from Oil Palm Empty Fruit Bunches Cellulose. Chemical and Process Engineering Research, 2013, vol. 17, iss. 21, pp. 12–20.
Bolotova K., Travina O., Chukhchin D., Novozhilov E. The Morphological Structure of Microcrystallites Derived from Plant and Bacterial Cellulose. Nano, Bio and Green-Technologies for a Sustainable Future: 17th International Multidisciplinary Scientific Geoconference SGEM 2017. Sofia, STEF92 Technology Ltd., 2017, vol. 17, pp. 407–412. https://doi.org/10.5593/sgem2017/61/S24.053
Budaeva V.V., Gismatulina Y.A., Mironova G.F., Skiba E.A., Gladysheva E.K., Kashcheyeva E.I., Baibakova O.V., Korchagina A.A., Shavyrkina N.A., Golubev D.S., Bychin N.V., Pavlov I.N., Sakovich G.V. Bacterial Nanocellulose Nitrates. Nanomaterials, 2019, vol. 9, iss. 12, art. 1694. https://doi.org/10.3390/nano9121694
Chang C., Zhang L. Cellulose-based Hydrogels: Present Status and Application Prospects. Carbohydrate Polymers, 2011, vol. 84, iss. 1, pp. 40–53. https://doi.org/10.1016/j.carbpol.2010.12.023
Cheng H.N., Dowd M.K., Selling G.W., Biswas A. Synthesis of Cellulose Acetate from Cotton Byproducts. Carbohydrate polymers, 2010, vol. 80, iss. 2, pp. 449–452. https://doi.org/10.1016/j.carbpol.2009.11.048
Feng T., Deng C., Xue Q., Wang Y., Huang J., Xiang Q. Bamboo Pulp Fiber Suitable for Nitrocellulose, Cellulose Acetate and Cellulose Fiber and its Production Method. Patent China, no. CN1995495B, 2006.
Geyer U., Heinze T., Stein A., Klemm D., Marsch S., Schumann D., Schmauder H.P. Formation, Derivatization and Applications of Bacterial Cellulose. International Journal of Biological Macromolecules, 1994, vol. 16, iss. 6, pp. 343–347. https://doi.org/10.1016/0141-8130(94)90067-1
Huang Y., Zhu C., Yang J., Nie Y., Chen C., Sun D. Recent Advances in Bacterial Cellulose. Cellulose, 2014, vol. 21, iss. 1, pp. 1–30. https://doi.org/10.1007/s10570-013-0088-z
Ifuku S., Nogi M., Abe K., Handa K., Nakatsubo F., Yano H. Surface Modification of Bacterial Cellulose Nanofibers for Property Enhancement of Optically Transparent Composites: Dependence on Acetyl-Group DS. Biomacromolecules, 2007, vol. 8, iss. 6, pp. 1973–1978. https://doi.org/10.1021/bm070113b
Israel A.U., Obot I.B., Umoren S.A., Mkpenie V., Asuquo J.E. Production of Cellulosic Polymers from Agricultural Wastes. E-Journal of Chemistry, 2008, vol. 5, iss. 1, pp. 81–85. https://doi.org/10.1155/2008/436356
Jamal S.H., Roslan N.J., Shah N.A.A., Noor S.A.M., Ong K.K., Yunus W.M.Z.W. Preparation and Characterization of Nitrocellulose from Bacterial Cellulose for Propellant Uses. Materials Today: Proceedings, 2020, vol. 29, pp. 185–189. https://doi.org/10.1016/j.matpr.2020.05.540
Liu J. Nitrate Esters Chemistry and Technology. Singapore, Springer, 2019. 684 p. https://doi.org/10.1007/978-981-13-6647-5
Liu J.P. Method of Making Nitrocellulose from Eulaliopsis Binata as Raw Material. Patent China, no. CN1011970, 1991.
Luo Q., Zhu J., Li Z., Duan X., Pei C., Mao C. The Solution Characteristics of Nitrated Bacterial Cellulose in Acetone. New Journal of Chemistry, 2018, vol. 42, iss. 22, pp. 18252–18258. https://doi.org/10.1039/C8NJ02018C
Malkov A., Tyshkunova I., Vidrina I., Novozhilov E. Diffractometric Method for Determining the Crystallinity Degree of Cellulose. 18th International Multidisciplinary Scientific Geoconference, SGEM 2018. Vienna, Austria, 2018, vol. 18, iss. 6.4, pp. 119–126. https://doi.org/10.5593/sgem2018V/6.4/S08.016
Mattar H., Baz Z., Saleh A., Shalaby A.S., Azzazy A.E., Salah H., Ismail I. Nitrocellulose: Structure, Synthesis, Characterization, and Applications. Water, Energy, Food and Environment Journal, 2020, no. 3, pp. 1–15.
Qiu K., Netravali A.N. A Review of Fabrication and Applications of Bacterial Cellulose Based Nanocomposites. Polymer Reviews, 2014, vol. 54, iss. 4, pp. 598–626. https://doi.org/10.1080/15583724.2014.896018
Reiniati I., Hrymak A.N., Margaritis A. Recent Developments in the Production and Applications of Bacterial Cellulose Fibers and Nanocrystals. Critical Reviews in Biotechnology, 2017, vol. 37, iss. 4, pp. 510–524. https://doi.org/10.1080/07388551.2016.1189871
Rodrigues Filho G., Monteiro D.S., da Silva Meireles C., de Assunção R.M.N., Cerqueira D.A., Barud H.S., Ribeiro S.J.L., Messadeq Y. Synthesis and Characterization of Cellulose Acetate Produced from Recycled Newspaper. Carbohydrate Polymers, 2008, vol. 73, iss. 1, pp. 74–82. https://doi.org/10.1016/j.carbpol.2007.11.010
Rodrigues Filho G., da Cruz S.F., Pasquini D., Cerqueira D.A., de Souza Prado V., de Assunção R.M.N. Water Flux Through Cellulose Triacetate Films Produced from Heterogeneous Acetylation of Sugar Cane Bagasse. Journal of Membrane Science, 2000, vol. 177, iss. 1–2, pp. 225–231. https://doi.org/10.1016/S0376-7388(00)00469-5
Sato H., Uraki Y., Kishimoto T., Sano Y. New Process for Producing Cellulose Acetate from Wood in Concentrated Acetic Acid. Cellulose, 2003, vol. 10, pp. 397–404. https://doi.org/10.1023/A:1027359708581
Samadian H., Maleki H., Allahyari Z., Jaymand M. Natural Polymers-based LightInduced Hydrogels: Promising Biomaterials for Biomedical Applications. Coordination Chemistry Reviews, 2020, vol. 420, art. 213432. https://doi.org/10.1016/j.ccr.2020.213432
Shevchenko A.R., Tyshkunova I.V., Chukhchin D.G., Malkov A.V., Toptunov E.A., Telitsin V.D., Rozhkova A.M., Sinitsyna O.A., Gofman I.V., Aksenov A.S. Production of Biomodified Bleached Kraft Pulp by Catalytic Conversion Using Penicillium verruculosum Enzymes: Composition, Properties, Structure and Application. Catalysts, 2023, vol. 13, iss. 1, art. 103. https://doi.org/10.3390/catal13010103
Schlufter K., Schmauder H.P., Dorn S., Heinze T. Efficient Homogeneous Chemical Modification of Bacterial Cellulose in the Ionic Liquid 1‐N‐butyl‐3‐Methylimidazolium Chloride. Macromolecular Rapid Communications, 2006, vol. 27, iss. 19, pp. 1670–1676. https://doi.org/10.1002/marc.200600463
Speicher N.L., Li P.Z., Wallace I.S. Phosphoregulation of the Plant Cellulose Synthase Complex and Cellulose Synthase-Like Proteins. Plants, 2018, vol. 7, iss. 3. 52 p. https://doi.org/10.3390/plants7030052
Sun D.P., Ma B., Zhu C.L., Liu C.S., Yang J.Z. Novel Nitrocellulose Made from Bacterial Cellulose. Journal of Energetic Materials, 2010, vol. 28, iss. 2, pp. 85–97. https://doi.org/10.1080/07370650903222551
Sunasee R., Hemraz U.D., Ckless K. Cellulose Nanocrystals: a Versatile Nanoplatform for Emerging Biomedical Applications. Expert Opinion on Drug Delivery, 2016, vol. 13, iss. 9, pp. 1243–1256. https://doi.org/10.1080/17425247.2016.1182491
Vydrina I., Malkov A., Vashukova K., Tyshkunova I., Mayer L., Faleva A., Shestakov S., Novozhilov E., Chukhchin D. A New Method for Determination of Lignocellulose Crystallinity from XRD Data using NMR Calibration. Carbohydrate Polymer Technologies and Applications, 2023, vol. 5, art. 100305. https://doi.org/10.1016/j.carpta.2023.100305
Yamamoto H., Horii F., Hirai A. Structural Studies of Bacterial Cellulose through the Solid-Phase Nitration and Acetylation by CP/MAS 13 C NMR Spectroscopy. Cellulose, 2006, vol. 13, pp. 327–342. https://doi.org/10.1007/s10570-005-9034-z
Yıldız Ş., Morcali M.H., Ziba C.A., Copcu B., Dolaz M. Synthesis and Characterization of Cellulose Derivatives from Industrial Towel Waste. ChemistrySelect, 2019, vol. 4, iss. 28, pp. 8358–8364. https://doi.org/10.1002/slct.201900398
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.