Аэрогели на основе диоксида кремния и лигносульфоната

Авторы

  • О.С. Бровко Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лавёрова УрО РАН https://orcid.org/0000-0002-1961-7831
  • М.Е. Нечаева Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лавёрова УрО РАН https://orcid.org/0000-0002-6099-1358
  • А.Д. Ивахнов Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лавёрова УрО РАН; Северный (Арктический) федеральный университет им. М.В. Ломоносова https://orcid.org/0000-0003-2822-9192
  • И.А. Паламарчук Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лавёрова УрО РАН https://orcid.org/0000-0002-2947-1370
  • Н.А. Горшкова Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лавёрова УрО РАН https://orcid.org/0000-0002-2036-2418
  • Н.И. Богданович Северный (Арктический) федеральный университет им. М.В. Ломоносова https://orcid.org/0000-0002-5374-2943

DOI:

https://doi.org/10.37482/0536-1036-2024-6-184-194

Ключевые слова:

биополимер, лигносульфонат натрия, диоксид кремния, аэрогель, текстурные характеристики

Аннотация

В настоящее время наблюдается значительный интерес к синтезу аэрогелей на основе природных полимеров. Применение биополимеров обусловлено их физико-химическими свойствами, доступностью, нетоксичностью, возобновляемостью сырья, необходимого для их производства. Такими характеристиками и обладают лигносульфонаты – сульфопроизводные природного биополимера лигнина, образующиеся в результате сульфитной (бисульфитной) делигнификации древесины. Особое внимание, сочетая свойства как органических, так и неорганических компонентов, привлекают композиционные аэрогельные материалы. Внедрение биополимеров в матрицу нанокомпозитных аэрогелей может улучшить их потребительские свойства. Целью данной работы является синтез аэрогелей на основе диоксида кремния и лигносульфоната натрия, изучение гелеобразования в системе «лигносульфонат натрия – диоксид кремния» и оценка влияния условий синтеза на формирование структуры аэрогельных материалов на их основе. Золь-гель синтезом получены гидрогели на основе компонентов различной химической природы лигносульфоната натрия и диоксида кремния. Показано, что прочные упругие гели формируются при концентрации диоксида кремния свыше 175 г/л. Установлено, что модификация лигносульфонатов натрия диоксидом кремния приводит к агрегации частиц и увеличению их размера. Аэрогельные материалы на основе лигносульфоната натрия и диоксида кремния, полученные при различных мольных соотношениях компонентов (массовой доли лигносульфоната в системе), обладают развитой внутренней поверхностью, площадь удельной поверхности составляет 250…452 м2/г, общий объем пор варьирует от 0,84 до 2,00 см3/г. Показано, что при повышении массовой доли лигносульфоната в системе текстурные характеристики композиционных аэрогельных материалов изменяются: наблюдается рост их удельной поверхности и объема пор. При содержании в системе 6…25 % лигносульфоната натрия удельная поверхность композиционных аэрогелей равняется 250…325 м2/г, при увеличении доли лигносульфоната натрия в системе до 33…50 % – достигает 357…452 м2/г. Синтезированные материалы можно использовать в качестве сорбентов, сенсорных устройств, носителей катализаторов.

Скачивания

Данные скачивания пока недоступны.

Биографии авторов

О.С. Бровко, Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лавёрова УрО РАН

канд. хим. наук, вед. науч. сотр., доц.; ResearcherID: AAF-5387-2019

М.Е. Нечаева, Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лавёрова УрО РАН

мл. науч. сотр., аспирант; ResearcherID: AAL-7068-2020

А.Д. Ивахнов, Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лавёрова УрО РАН; Северный (Арктический) федеральный университет им. М.В. Ломоносова

канд. хим. наук, ст. науч. сотр.; ResearcherID: U-4822-2019

И.А. Паламарчук, Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лавёрова УрО РАН

канд. хим. наук, ст. науч. сотр.; ResearcherID: AAF-5454-2019

Н.А. Горшкова, Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лавёрова УрО РАН

канд. хим. наук, ст. науч. сотр.; ResearcherID: G-2949-2018

Н.И. Богданович, Северный (Арктический) федеральный университет им. М.В. Ломоносова

д-р техн. наук, проф.; ResearcherID: A-4662-2013

Библиографические ссылки

Арапова О.В., Чистяков А.В., Цодиков М.В., Моисеев И.И. Лигнин – возобновляемый ресурс углеводородных продуктов и энергоносителей (обзор) // Нефтехимия. 2020. Т. 60, № 3. С. 251–269. Arapova O.V., Chistyakov A.V., Tsodikov M.V., Moiseev I.I. Lignin – a Renewable Resource of Hydrocarbon Products and Energy Carriers (Review). Neftekhimiya = Petroleum Chemistry, 2020, vol. 60, no. 3, pp. 251–269. (In Russ.). https://doi.org/10.31857/S0028242120030041

Вишнякова А.П., Бровко О.С. Применение ультрафильтрации для очистки, концентрирования и фракционирования лигносульфонатов сульфитного щелока // Экология и пром-сть России. 2009. № 8. С. 37–39. Vishnyakova A.P., Brovko O.S. Application of Ultrafiltration for Purifcation, Concentration and Fractionation of Lignosulphonates of Sulfite Liquor. Ekologiya i promyshlennost’ Rossii = Ecology and Industry of Russia, 2009, no. 8, pp. 37–39. (In Russ.).

Паламарчук И.А., Бровко О.С., Бойцова Т.А., Вишнякова А.П., Макаревич Н.А. Влияние ионной силы раствора на комлексообразование сульфопроизводных биополимера лигнина и хитозана // Химия растит. сырья. 2011. № 2. С. 57–64. Palamarchuk I.A., Brovko O.S., Bojtsova T.A., Vishnyakova A.P., Makarevich N.A. The Ionic Strength Effect of a Solution on the Complex Formation of Sulfonated Biopolymers of Lignin and Chitosan. Khimija Rastitel’nogo Syr’ja, 2011, no. 2, pp. 57–64. (In Russ.).

Плахин В.А., Хабаров Ю.Г., Вешняков В.А. Синтез коллоидного серебра с использованием лигносульфонатов // Изв. вузов. Лесн. журн. 2021. № 6. С. 184–195. Plakhin V.A., Khabarov Yu.G., Veshnyakov V.A. Synthesis of Colloidal Silver Using Lignosulfonates. Lesnoy Zhurnal = Russian Forestry Journal, 2021, no. 6, pp. 184–195. (In Russ.). https://doi.org/10.37482/0536-1036-2021-6-184-195

Шиндряев А.В., Лебедев А.Е., Меньшутина Н.В. Получение аэрогелей диоксида кремния с модификацией внутренней поверхности // Вестн. ТГТУ. 2023. Т. 29, № 3. С. 463–473. Shindryaev A.V., Lebedev A.E., Menshutina N.V. Preparing Silicon Dioxide Aerogels with Modification of the Inner Surface. Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta = Transactions of the Tambov State Technical University, 2023, vol. 29, no. 3, pp. 463–473. (In Russ.).

Babiarczuk B., Lewandowski D., Kierzek K., Detyna J., Jones W., Kaleta J., Krzak J. Mechanical Properties of Silica Aerogels Controlled by Synthesis Parameters. Journal of Non-Crystalline Solids, 2023, vol. 606, art. no. 122171. https://doi.org/10.1016/j.jnoncrysol.2023.122171

Brovko O., Palamarchuk I., Bogdanovich N., Ivakhnov А., Chukhchin D., Belousova M., Arkhilin M., Gorshkova N. Composite Aerogel Materials Based on Lignosulfonates and Silica: Synthesis, Structure, Properties. Materials Chemistry and Physics, 2021, vol. 269, art. no. 124768. https://doi.org/10.1016/j.matchemphys.2021.124768

Brovko O.S., Bogolitsyn K.G., Palamarchuk I.A., Gorshkova N.A., Bogdanovich N.I., Ivakhnov A.D., Belousova M.E. Preparation of Aerogel Composite Materials Based on Lignosulfonates and Silica. Russian Journal of Physical Chemistry B, 2022, vol. 16, pp. 1204–1207. https://doi.org/10.1134/S1990793122070041

Budtova T., Aguilera D.A., Beluns S., Berglund L., Chartier C., Espinosa E., Gaidukovs S., Klimek-Kopyra A., Kmita A., Lachowicz D., Liebner F., Platnieks O., Rodríguez A., Navarro L.K.T., Zou F., Buwalda S.J. Biorefinery Approach for Aerogels. Polymers, 2020, vol. 12, no. 12, art. no. 2779. https://doi.org/10.3390/polym12122779

Christina K., Subbiah K., Arulraj P., Krishnan S.K., Sathishkumar P. A Sustainable and Eco-Friendly Approach for Environmental and Energy Management Using Biopolymers Chitosan, Lignin and Cellulose – A Review. International Journal of Biological Macromolecules, 2024, vol. 257, part 2, art. no. 128550. https://doi.org/10.1016/j.ijbiomac.2023.128550

Jesionowski T., Klapiszewski Ł., Milczarek G. Kraft Lignin and Silica as Precursors of Advanced Composite Materials and Electroactive Blends. Journal of Materials Science, 2014, vol. 49, pp. 1376–1385. https://doi.org/10.1007/s10853-013-7822-7

Khalil H.P.S.A., Yahya E.B., Jummaat F., Adnan A.S., Olaiya N.G., Rizal S., Abdullah C.K., Pasquini D., Thomas S. Biopolymers Based Aerogels: A Review on Revolutionary Solutions for Smart Therapeutics Delivery. Progress in Materials Science, 2023, vol. 131, art. no. 101014. https://doi.org/10.1016/j.pmatsci.2022.101014

Khan N.R., Sharmin T., Rashid A.B. Exploring the Versatility of Aerogels: Broad Applications in Biomedical Engineering, Astronautics, Energy Storage, Biosensing, and Current Progress. Heliyon, 2024, vol. 10, iss. 1, art. no. e23102. https://doi.org/10.1016/j.heliyon.2023.e23102

Klapiszewski L., Zietek J., Ciesielczyk F., Siwinska-Stefanska K., Jesionowski T. Magnesium Silicate Conjugated with Calcium Lignosulfonate: In situ Synthesis and Comprehensive Physicochemical Evaluations. Physicochemical Problems of Mineral Processing, 2018, vol. 54(3), pp. 793–802. https://doi.org/10.5277/ppmp1875

Matinfar M., Nychka J.A. A review of Sodium Silicate Solutions: Structure, Gelation, and Syneresis. Advances in Colloid and Interface Science, 2023, vol. 322, art. no. 103036. https://doi.org/10.1016/j.cis.2023.103036

Meti P., Mahadik D.B., Lee K.-Y., Wang Q., Kanamori K., Gong Y.-D., Park H.-H. Overview of Organic–Inorganic Hybrid Silica Aerogels: Progress and Perspectives. Materials & Design, 2022, vol. 222, art. no. 111091. https://doi.org/10.1016/j.matdes.2022.111091

Minju N., Balagopal N.N., Savithri S. Sodium Silicate-Derived Aerogels: Effect of Processing Parameters on Their Applications. RSC Advances, 2021, vol. 11, pp. 15301–15322. https://doi.org/10.1039/D0RA09793D

Modrzejewska-Sikorska A., Konował E., Klapiszewski Ł., Nowaczyk G., Jurga S., Jesionowski T., Milczarek G. Lignosulfonate-Stabilized Selenium Nanoparticles and Their Deposition on Spherical Silica. International Journal of Biological Macromolecules, 2017, vol. 103, pp. 403–408. https://doi.org/10.1016/j.ijbiomac.2017.05.083

Patel R., Dhar P., Babaei-Ghazvini A., Dafchahi M.N., Acharya B. Transforming Lignin into Renewable Fuels, Chemicals, and Materials: A Review. Bioresource Technology Reports, 2023, vol. 22, art. no. 101463. https://doi.org/10.1016/j.biteb.2023.101463

Rafieian F., Dufresne A., Askari G., Rezaei A., Seyedhosseini-Ghaheh H., Jafari S.M. Aerogels as Novel Ingredients: Production, Properties and Applications in Medical, Food and Environmental Sectors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, vol. 687, art. no. 133410. https://doi.org/10.1016/j.colsurfa.2024.133410

Ruwoldt J. A Critical Review of the Physicochemical Properties of Lignosulfonates: Chemical Structure and Behavior in Aqueous Solution, at Surfaces and Interfaces. Surfaces, 2020, vol. 3, no. 4, pp. 622–648. https://doi.org/10.3390/surfaces3040042

Schneider W.D.H., Dillon A.J.P., Camassola M. Lignin Nanoparticles Enter the Scene: A Promising Versatile Green Tool for Multiple Applications. Biotechnology Advances, 2021, vol. 47, art. no. 107685. https://doi.org/10.1016/j.biotechadv.2020.107685

Soorbaghi F.P., Isanejad M., Salatin S., Ghorbani M., Jafari S., Derakhshankhah H. Bioaerogels: Synthesis Approaches, Cellular Uptake, and the Biomedical Applications. Biomedicine & Pharmacotherapy, 2019, vol. 111, pp. 964–975. https://doi.org/10.1016/j.biopha.2019.01.014

Vera M., Bischof S., Rivas B.L., Weber H., Mahler A.K., Kozich M., Guebitz G.M., Nyanhongo G.S. Biosynthesis of Highly Flexible Lignosulfonate–Starch Based Materials. European Polymer Journal, 2023, vol. 198, art. no. 112392. https://doi.org/10.1016/j.eurpolymj.2023.112392

Xiong W., Yang D., Alam M.A., Xu J., Li Y., Wang H., Qiu X. Structural Regulation of Lignin/Silica Nanocomposites by Altering the Content of Quaternary Ammonium Groups Grafted into Softwood Kraft Lignin. Industrial Crops and Products, 2020, vol. 144, art. no. 112039. https://doi.org/10.1016/j.indcrop.2019.112039

Zakis G.F. Functional Analysis of Lignins and Their Derivatives. Riga, Zinatne, 1987. 230 p.

Zhang Z., Chen Y., Wang D., Yu D., Wu C. Lignin-Based Adsorbents for Heavy Metals. Industrial Crops & Products, 2023, vol. 193, art. no. 116119. https://doi.org/10.1016/j.indcrop.2022.116119

Загрузки

Опубликован

18.12.2024

Как цитировать

Бровко, О., М. Нечаева, А. Ивахнов, И. Паламарчук, Н. Горшкова, и Н. Богданович. «Аэрогели на основе диоксида кремния и лигносульфоната». Известия вузов. Лесной журнал, вып. 6, декабрь 2024 г., сс. 184-9, doi:10.37482/0536-1036-2024-6-184-194.

Выпуск

Раздел

ТЕХНОЛОГИЯ ХИМ. ПЕРЕРАБОТКИ ДРЕВЕСИНЫ И ПР-ВО ДРЕВЕСНО-ПОЛИМЕРНЫХ КОМПОЗИТОВ