Needle-Like Leaf Organs of Conifers. Part I. Modeling the Needle Cross-Section Perimeter

Authors

DOI:

https://doi.org/10.37482/0536-1036-2024-3-73-91

Keywords:

conifers, needle surface area, needle cross-section perimeter, equivalent radius, modelling

Abstract

Despite the availability of measuring systems for estimating the surface area of leaf organs of higher plants, the need for simple standard methods for determining this indicator area remains relevant for plant physiologists. The methods for estimating the surface area of needle-like leaf organs of conifers, based on the geometry of an individual needle rest on the general principle of calculating the needle surface area as the product of its length by the perimeter of its cross-section. This makes the cross-section perimeter one of the most important parameters needed to characterize the needle surface area. The strong variability of this parameter depending on the species necessitates the development of individual models of the cross-section of individual needles. The aim of this study has been to create a universal model for estimating the needle cross-section perimeter, irrespective of the tree species. For the practical implementation of the aim, a method was proposed for estimating the perimeter of the needle cross-section, based on the well-known fact that any closed line is transformable into an equivalent circle, while the length of the closed line does not change. The perimeter of the equivalent circle can be related to the parameters of the geometric figure before the transformation. This approach allows us to relate the width and thickness of the needle cross-section to its perimeter. The developed universal model of the needle cross-section has been verified on cross-sections of Siberian fir (Abies sibirica L.) and common juniper (Juniperus communis L.) needles. The samples of needles of these woody plants have been collected from a bilberry-sphagnum spruce forest in the boreal zone of the north-east of the European part of Russia (Knyazhpogostkiy district, the Komi Republic). Statistical analysis has shown the significance and adequacy of the model. It can be used to assess the perimeter of coniferous needles, irrespective of their species. In this case, the accuracy of perimeter estimation is comparable to the accuracy of direct perimeter measurement by the piecewise linear approximation method.

Downloads

Download data is not yet available.

Author Biographies

Natal’ya V. Tarasov, Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences

Candidate of Biology; ResearcherID: A-7112-2016

Natal’ya V. Gerling, Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences

Candidate of Biology; ResearcherID: Q-2273-2015

References

Уткин А.И., Ермолова Л.С., Уткина И.А. Площадь поверхности лесных растений: сущность, параметры, использование. М.: Наука, 2008. 292 с. Utkin A.I., Ermolova L.S., Utkina I.A. Surface Area of Forest Plants: Essence, Parameters, Use. Moscow, Nauka Publ., 2008. 292 p. (In Russ.).

Цельникер Ю.Л. Упрощенный метод определения поверхности хвои сосны и ели // Лесоведение. 1982. № 4. С. 85–88. Tsel’niker Yu.L. A Simplified Method for Determining the Surface of Pine and Spruce Needles. Lesovedenie = Russian Journal of Forest Science, 1982, no. 4, pp. 85–88. (In Russ.).

Цельникер Ю.Л., Ельчина Л.М. Упрощенный метод определения площади поверхности хвои лиственницы // Лесоведение. 1996. № 3. С. 86–91. Tsel’niker Yu.L., El’china L.M. A Simplified Method for Determining the Surface Area of Larch Needles. Lesovedenie = Russian Journal of Forest Science, 1996, no. 3, pp. 86–91. (In Russ.).

Эзау К. Анатомия семенных растений. М.: Мир, 1980. Кн. 2. 400 с. Esau K. Anatomy of Seed Plants. Moscow, Mir Publ., 1980, book 2. 400 p. (In Russ.).

Bond-Lamberty B., Wang C., Gower S.T. The Use of Multiple Measurement Techniques to Refine Estimates of Conifer Needle Geometry. Canadian Journal of Forest Research, 2003, vol. 33, no. 1, pp. 101–105. https://doi.org/10.1139/x02-166

Bertalanffy von L. Basic Concepts in Quantitative Biology of Metabolism. Helgoländer Wissenschaftliche Meeresuntersuchungen, 1964, vol. 9, pp. 5–37. https://doi.org/10.1007/BF01610024

Bookstein F.L. Morphometric Tools for Landmark Data. Geometry and Biology. Cambridge University Press, 1992. 435 p. https://doi.org/10.1017/CBO9780511573064

Courant R., Robbins H. What is Mathematics? An Elementary Approach to Ideas and Methods. Oxford University Press, 1996. 592 p. https://doi.org/10.1093/oso/9780195105193.001.0001

Dewitte K., Fierens C., Stöckl D., Thienpont L.M. Application of the BlandAltman Plot for Interpretation of Method-Comparison Studies: a Critical Investigation of its Practice. Clinical Chemistry, 2002, vol. 48, iss. 5, pp. 799–801. https://doi.org/10.1093/clinchem/48.5.799

Giavarina D. Understanding Bland Altman Analysis. Biochemia Medica, 2015, vol. 25, iss. 2, pp. 141–151. http://dx.doi.org/10.11613/BM.2015.015

Gould S.J. Allometry and Size in Ontogeny and Phylogeny. Biological Reviews, 1966, vol. 41, pp. 587–640. https://doi.org/10.1111/j.1469-185X.1966.tb01624.x

Katsuno M., Hozumi K. Needle Area Measurement by the Cut Method and Estimation of Specific Leaf Area in Cryptomeria japonica. Ecological Research, 1987, vol. 2, pp. 203–213. https://doi.org/10.1007/BF02349774

Kerner H., Gross E., Koch W. Structure of the Assimilation System of a Dominating Spruce Tree (Picea abies (L.) Karst.) of Closed Stand: Computation of Needle Surface Area by Means of a Variable Geometric Needle Model. Flora, 1977, vol. 166, iss. 5, pp. 449–459. https://doi.org/10.1016/S0367-2530(17)32165-5

Krüssmann G. Die Nadelgehölze. Eine Nadelholzkunde für die Praxis. 3rd ed., revised. Berlin, Paul Parrey Verlag, 1979. 264 p. (In Germ.).

Krüssmann G. Handbuch der Nadelgehölze. Berlin, Hamburg, Paul Parey Verlag, 1972. 366 p. (In Germ.).

Lin J., Sampson D.A., Deckmyn G., Ceulemans R. Significant Overestimation of Needle Surface Area Estimates Based on Needle Dimensions in Scots Pine (Pinus sylvestris). Canadian Journal of Botany, 2002, vol. 80, no. 9, pp. 927–932. https://doi.org/10.1139/b02-081

Maertens R., Rousseau R. Een Nieuwe Benaderde Formule voor de Omtrek van een Ellips. Wiskunde & Onderwijs, 2000, vol. 26, pp. 249–258. (In Dutch).

Mosimann J.E. Size Allometry: Size and Shape Variables with Characterizations of the Lognormal and Generalized Gamma Distributions. Journal of the American Statistical Association, 1970, vol. 65, iss. 330, pp. 930–945. http://dx.doi.org/10.1080/01621459.1970.10481136

NCSS Statisticfl Software. Chapter 204. Bland-Altman Plot and Analysis. Available at: https://www.ncss.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Bland-Altman_Plot_and_Analysis.pdf (accessed: 18.04.22)

Pólya G., Szegö G. Isoperimetric Inequalities in Mathematical Physics. Princeton, Princeton University Press, vol. 27, 1951. 279 p. https://doi.org/10.1515/9781400882663

Zwillinger D. CRC Standard Mathematical Tables and Formulas. Chapman and Hall/CRC Press, 2002. 928 p. https://doi.org/10.1201/9781420035346

Published

2024-06-14

How to Cite

Tarasov С., and Gerling Н. “Needle-Like Leaf Organs of Conifers. Part I. Modeling the Needle Cross-Section Perimeter”. Lesnoy Zhurnal (Forestry Journal), no. 3, June 2024, pp. 73-91, doi:10.37482/0536-1036-2024-3-73-91.