Reserves and Structure of Phytomass in Northern Taiga Pine Forest Stands in the Komi Republic
DOI:
https://doi.org/10.37482/0536-1036-2022-4-25-38Keywords:
pine forest, phytomass, Komi Republic, green-moss forest type, sphagnum forest type, northern taiga, leaf area index, conversion factorAbstract
The research aims at estimating phytomass reserves of northern taiga green-moss and sphagnum pine forests growing in the Komi Republic. The study was carried out in pine forests at the Zelenoborsk forest research station of the Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (IB Komi SC UB RAS) in 2016–2019. We analyzed sample trees data and derived power equations of the dependence of the individual fractions weight on the stem diameter at the breast height (1.3 m) for the main forest-forming species (pine, spruce, larch, and birch) of green-moss and sphagnum forest are characterized by rather large phytomass reserves, 136–211 t/ha. While in sphagnum pine forests there are 89–96 t/ha of phytomass. Despite the admixture of other wood species, the leading pool is represented by pine trees, and the main fraction (46–56 %) is wood of stem. The input of stem wood and stem as a whole (bark and wood) is greater in green-moss pine forests compared to sphagnum pine forests, while the share of roots in these two types is approximately the same. Participation of tree crowns (needles/leaves and branches) in the total phytomass reserves of pine stands on automorphic soils is significantly lower (17 % on average) than in communities on semihydromorphic and hydromorphic soils (22 % on average). The relatively greater mass of needles and leaves resulted in a high LAI, which varied from 8.8 to 17.8 and from 7.7 to 9.8 ha/ha, respectively, in green-moss and sphagnum pine forests. We found a high reliable (R = 0.88; p = 0.004) relationship between LAI and the tree basal areas sum, whereas it is statistically insignificant with density and wood supply. The conversion factors were calculated to convert timber volume into phytomass reserves of both individual fractions and species as a whole. The presented data are useful for assessing the productivity of pine ecosystems in different growing conditions during forest monitoring (including remote sensing methods) and also when planning forest management measures in order to increase the productivity of pine forests.
Acknowledgements: This work was carried out within the framework of the state assignment of the Institute of Biology Komi SC UB RAS for the research topic “Zonal Regularities of the Structure and Productivity Dynamics of Primary and Anthropogenically Modified Phytocenoses of Forest and Bog Ecosystems of European North-East Russia” (registration number: 1021051101417-8-1.6.19). The authors are grateful to N.V. Torlopova, A.I. Patov and S.I. Naymushina for their assistance in the fieldwork.
For citation: Osipov A.F., Kutyavin I.N., Manov A.V., Kuznetsov M.A., Bobkova K.S. Reserves and Structure of Phytomass in Northern Taiga Pine Forest Stands in the Komi Republic. Lesnoy Zhurnal = Russian Forestry Journal, 2022, no. 4, pp. 25–38. (In Russ.). https://doi.org/10.37482/0536-1036-2022-4-25-38
Downloads
References
Бабич Н.А., Мерзленко М.Д., Евдокимов И.В. Фитомасса культур сосны и ели в европейской части России. Архангельск, 2004. 112 с. Babich N.A., Merzlenko M.D., Evdokimov I.V. Phytomass of Pine and Spruce Plantations in the European Part of Russia. Arkhangelsk, 2004. 112 p. (In Russ.).
Биопродукционный процесс в лесных экосистемах Севера / под ред. К.С. Бобковой, Э.П. Галенко. СПб.: Наука, 2001. 278 с. Process of Bioproductivity in the North Forest Ecosystems. Ed. by K.S. Bobkova, E.P. Galenko. Saint Petersburg, Nauka Publ., 2001. 278 p. (In Russ.).
Бобкова К.С. Биологическая продуктивность хвойных лесов Европейского Северо-Востока. Л.: Наука, 1987. 156 с. Bobkova K.S. Biological Productivity of Coniferous Forests of the European North-East. Leningrad, Nauka Publ., 1987. 156 p. (In Russ.).
Вакуров А.Д. Продуктивность сосняков в подзоне северной тайги // Продуктивность органической массы лесов в разных природных зонах. М., 1973. С. 7–25. Vakurov A.D. Productivity of Pine Forests in Northern Taiga Subzone. Productivity of Forest Organic Matter in Different Natural Zones. Moscow, 1973, pp. 7–25. (In Russ.).
Грабовский В.В., Зукерт Н.В., Корзухин М.Д. Оценка индекса листовой поверхности для территории России по данным государственного лесного реестра // Лесоведение. 2015. № 4. С. 255–259. Grabovskii V.V., Zukert N.V., Korzukhin M.D. Leaf Area Index Estimate for the Russian Territory Based on the State Forest Inventory. Lesovedenie = Russian Journal of Forest Science, 2015, no. 4, pp. 255–259. (In Russ.).
Замолодчиков Д.Г., Уткин А.И., Коровин Г.Н. Определение запасов углерода по зависимым от возраста насаждений конверсионно-объемным коэффициентам // Лесоведение. 1998. № 3. С. 84–93. Zamolodchikov D.G., Utkin A.I., Korovin G.N. Determination of Carbon Reserves by Conversion-Volume Factors Related to the Age of Stands. Lesovedenie = Russian Journal of Forest Science, 1998, no. 3, pp. 84–93 (In Russ.).
Клевцов Д.Н., Тюкавина О.Н., Адаи Д.М. Биоэнергетический потенциал надземной фитомассы культур сосны обыкновенной таежной зоны // Изв. вузов. Лесн. журн. 2018. № 4. С. 49–55. Klevtsov D.N., Tyukavina O.N., Adayi G.M. Bioenergy Potential of Aerial Phytomass of Scots Pine in the Middle Taiga Forest Region. Lesnoy Zhurnal = Russian Forestry Journal, 2018, no. 4, pp. 49–55. (In Russ.). https://doi.org/10.17238/issn0536-1036.2018.4.49
Кутявин И.Н. Сосновые леса Северного Приуралья: строение, рост, продуктивность. Сыктывкар: ИБ Коми НЦ УрО РАН, 2018. 176 с. Kutyavin I.N. Pine Forests of the Northern Cis-Urals: Structure, Growth, Productivity. Syktyvkar, IB Komi SC UB RAS Publ., 2018. 176 p. (In Russ.). https://doi.org/10.31140/book-2018-02
Молчанов А.А. Продуктивность органической массы в лесах различных зон. М.: Наука, 1971. 275 с. Molchanov A.A. Productivity of Organic Matter in Forests of Different Zones. Moscow, Nauka Publ., 1971. 275 p. (In Russ.).
Молчанов А.А., Поляков А.Ф. Продуктивность органической массы в сосняках сфагновых // Продуктивность органической и биологической массы леса. М., 1974. С. 43–78. Molchanov A.A., Polyakov A.F. Productivity of Organic Matter in Sphagnum Pine Forests. Productivity of Organic and Biological Matter of the Forest. Moscow, 1974, pp. 43–78. (In Russ.).
Осипов А.Ф. Биологическая продуктивность сосняков чернично-сфагновых средней тайги // Изв. вузов. Лесн. журн. 2013. № 1. С. 43–51. Osipov A.F. Biological Productivity of Whortleberry-Sphagnum Pine Forests in Medium Boreal Taiga. Lesnoy Zhurnal = Russian Forestry Journal, 2013, no. 1, pp. 43–51. (In Russ.). https://doi.org/10.7868/S0032180X13050110
Тарасов С.И., Пристова Т.А., Бобкова К.С. Динамика фитомассы древостоя лиственно-хвойного фитоценоза средней тайги Республики Коми // Сиб. лесн. журн. 2018. № 1. С. 50–58. Tarasov S.I., Pristova T.A., Bobkova K.S. Dynamics of Phytomass of a Tree Stand of the Deciduous-Coniferous Phytocenosis in Middle Taiga of Komi Republic. Sibirskij Lesnoj Zurnal = Siberian Journal of Forest Science, 2018, no. 1, pp. 50–58. (In Russ.). https://doi.org/10.15372/SJFS20180105
Усольцев В.А. Биологическая продуктивность лесов Северной Евразии: методы, база данных и ее приложения. Екатеринбург: УрО РАН, 2007. 637 с. Usol’tsev V.A. Biological Productivity of Forests in Northern Eurasia: Methods, Database and Its Supplements. Yekaterinburg, UrB RAS Publ., 2007. 637 p. (In Russ.).
Щепащенко Д.Г., Швиденко А.З., Пергер К., Дресел К., Фриц Ш., Лакида П., Мухортова Л.В., Усольцев В.А., Бобкова К.С., Осипов А.Ф., Мартыненко О.В., Карминов В.Н., Онтиков П.В., Щепащенко М.В., Кракснер Ф. Изучение фитомассы лесов: текущее состояние и перспективы // Сиб. лесн. журн. 2017. № 4. С. 3–11. Schepaschenko D.G., Shvidenko A.Z., Perger C., Dresel C., Fritz S., Lakyda P. I., Mukhortova L.V., Usoltsev V.A., Bobkova K.S., Osipov A.F., Martynenko O.V., Karminov V.N., Ontikov P.V., Shchepashchenko M.V., Kraxner F. Forest Biomass Observation: Current State and Prospective. Sibirskij Lesnoj Zurnal = Siberian Journal of Forest Science, 2017, no. 4, pp. 3–11 (In Russ.). https://doi.org/10.15372/SJFS20170401
Bukvareva E., Zamolodchikov D., Grunewald K. National Assessment of Ecosystem Services in Russia: Methodology and Main Problems. Science of the Total Environment, 2019, vol. 655, pp. 1181–1196. https://doi.org/10.1016/j.scitotenv.2018.11.286
Calders K., Origo N., Disney M., Nightingale J., Woodgate W., Armston J., Lewis Ph. Variability and Bias in Active and Passive Ground-Based Measurements of Effective Plant, Wood and Leaf Area Index. Agricultural and Forest Meteorology, 2018, vol. 252, pp. 231–240. https://doi.org/10.1016/j.agrformet.2018.01.029
Ivanov A.V., Pokamestova V.Yu., Kasatkin A.S., Zamolodchikov D.G. Leaf Area Indices of Forest Stands in Natural and Disturbed Forests of Primorsky Krai. Russian Journal of Ecology, 2020, vol. 51, iss. 4, pp. 299–305. https://doi.org/10.1134/S1067413620040086
Lu D. The Potential and Challenge of Remote Sensing-Based Biomass Estimation. International Journal of Remote Sensing, 2006, vol. 27, iss. 7, pp. 1297–1328. https://doi.org/10.1080/01431160500486732
Payne N.J., Allan Cameron D., Leblanc J.-D., Morrison I.K. Carbon Storage and Net Primary Productivity in Canadian Boreal Mixedwood Stands. Journal of Forestry Research, 2019, vol. 30, iss. 5, pp. 1667–1678. https://doi.org/10.1007/s11676-019-00886-0
R Core Team. R: A Language and Environment for Statistical Computing. Vienna, R Foundation for Statistical Computing, 2020. Available at: http://www.r-project.org/index.html (accessed 16.10.20).
Reich P.B., Luo Y., Bradford J.B., Poorter H., Perry Ch.H., Oleksyn J. Temperature Drives Global Patterns in Forest Biomass Distribution in Leaves, Stems, and Roots. PNAS, 2014, vol. 111, no. 38, pp. 13721–13726. https://doi.org/10.1073/pnas.1216053111
Schepaschenko D., Moltchanova E., Shvidenko A., Blyshchyk V., Dmitriev E., Martynenko O., See L., Kraxner F. Improved Estimates of Biomass Expansion Factors for Russian Forests. Forests, 2018, vol. 9, iss. 6, art. 312. https://doi.org/10.3390/f9060312
Sheil D., Bongers F. Interpreting Forest Diversity-Productivity Relationships: Volume Values, Disturbance Histories and Alternative Inferences. Forest Ecosystems, 2020, vol. 7, art. 6. https://doi.org/10.1186/s40663-020-0215-x
Shobairi S.O.R., Usoltsev V.A., Chasovskikh V.P. Vegetation Fractional Coverage (VFC) Estimation of Planted and Natural Zones Based on Remote Sensing. American Journal of Environmental Policy and Management, 2018, vol. 4, no. 1, pp. 21–31.
Usoltsev V.A. Forest Biomass and Primary Production Database for Eurasia. Yekaterinburg, USFEU Publ., 2020. https://doi.org/10.13140/RG.2.2.29991.70568
Usoltsev V.A., Chasovskikh V.P., Noritsina Yu.V., Kokh E.V. Methods and Results of Studying the Geographical Trends in the Structure of Single-Tree Biomass of Larches and Two-Needled Pines in Eurasia. Russian Journal of Ecology, 2016, vol. 47, pp. 442–452. https://doi.org/10.1134/S1067413616050143
Yemshanov D., McKenney D.W., Hope E., Lempriere T. Renewable Energy from Forest Residues – How Greenhouse Gas Emission Offsets Can Make Fossil Fuel Substitution More Attractive. Forests, 2018, vol. 9, iss. 2, art. 79. https://doi.org/10.3390/f9020079
Zianis D., Muukkonen P., Mäkipää R., Mencuccini M. Biomass and Stem Volume Equations for Tree Species in Europe. Silva Fennica Monographs 4, 2005. 63 p. https://doi.org/10.14214/sf.sfm4