Flexibility Justification of a Raft Made of Raft Units

Authors

DOI:

https://doi.org/10.37482/0536-1036-2022-4-146-155

Keywords:

timber rafting, rafting course, raft, flat raft unit, guard rail, interval, raft flexibility index

Abstract

In order to provide accident free timber rafting on small and medium-sized rivers, it is necessary to consider in detail the features of ensuring the raft flexibility with all the necessary calculations. The research aims at developing an improved methodology for calculating the parameters that ensure the flexibility of a raft made of flat raft units. The raft flexibility is formed through the optimal interval between flat raft units, which directly affects the flexibility index. The minimum allowable interval between raft units depends on the length of guard rails in the section line: the guard rail laying along the section line convex side and the guard rail laying along the section line concave side. Length of the guard rails in the timber transportation unit will be determined by the minimum turning radius of the rafting course, the section line width, the length of flat raft units and the distance from the raft board to the guard rail. When determining the optimal interval between the flat raft units and the raft flexibility, it is assumed that the section line of flat raft units, regardless of a strong piling current, passes within the raft course dimensions, where the raft course axis coincides with the raft axis, and the flat raft units located between the 1st and the last flat raft units can move freely in the longitudinal direction. We have studied the dependences of the interval between flat raft solid units on the minimum turning radius of the raft course, the section line width and the length of flat raft units, using the proposed methodology for calculating raft flexibility. We have found that with increasing turning radius of the rafting course, the interval between the flat raft units decreases, and the raft flexibility index increases. The interval between flat raft units becomes larger as the width of flat raft units increases and the coefficient of raft section density decreases in this case. As the length of the flat raft unit increases, the interval between flat raft units increases; the coefficient of raft section density decreases.
For citation: Vasiliev V.V., Afonichev D.N. Flexibility Justification of a Raft Made of Raft Units. Lesnoy Zhurnal = Russian Forestry Journal, 2022, no. 4, pp. 146–155 (In Russ.). https://doi.org/10.37482/0536-1036-2022-4-146-155

Downloads

Download data is not yet available.

Author Biographies

Vladimir V. Vasiliev, Branch of OOO “EFKO Management Company”

Candidate of Engineering; ResearcherID: ABG-5020-2021

Dmitry N. Afonichev, Voronezh State Agrarian University named after Emperor Peter the Great

Doctor of Engineering, Prof; ResearcherID: J-8541-2017

References

Васильев В.В. Эксплуатационные показатели сплоточной единицы стабилизированной плавучести // Уч. зап. ПетрГУ. 2011. № 8. С. 100–102. Vasil’ev V.V. Performance Indicators of Raft Sections with Stabilized Buoyancy. Proceedings of Petrozavodsk State University, 2011, no. 8, pp. 100–102. (In Russ.).

Васильев В.В. Изменение осадки плоской сплоточной единицы // Лесотехн. журн. 2013. № 1(9). С. 78–86. Vasilyev V.V. Flat Raft Draft Changing. Forestry Engineering Journal, 2013, no. 1(9), pp. 78–86. (In Russ.).

Васильев В.В. Повышение эффективности и экологической безопасности плотового сплава лесоматериалов: дис. … канд. техн. наук. Воронеж, 2013. 259 с. Vasiliev V.V. Improving the Efficiency and Environmental Safety of Timber Rafting: Cand. Eng. Sci. Diss. Voronezh, 2013. 259 p. (In Russ.).

Васильев В.В., Афоничев Д.Н. Усовершенствованные системы плотового сплава лесоматериалов. Saarbrucken (Германия): LAP LAMBERT Academic Publishing, 2014. 284 с. Vasiliev V.V., Afonichev D.N. Improved Systems of Timber Rafting. Saarbrucken, Germany, LAP LAMBERT Academic Publishing, 2014. 284 p. (In Russ.).

Куколевский Г.А., Зайцев А.А. Первоначальный плотовой лесосплав. М.: Лесн. пром-сть, 1976. 88 с. Kukolevskiy G.A., Zaytsev A.A. Spring Timber Rafting. Moscow, Lesnaya promyshlennost, Publ., 1976. 88 p. (In Russ.).

Митрофанов А.А. Лесосплав. Новые технологии, научное и техническое обеспечение. Архангельск: АГТУ, 2007. 492 с. Mitrofanov A.A. Timber Floating. New Technologies, Scientific and Maintenance Engineering Support. Arkhangelsk, ASTU Publ., 2007. 492 p. (In Russ.).

Овчинников М.М., Полищук В.П., Григорьев Г.В. Транспорт леса: в 2 т. Т. 2. Лесосплав и судовые перевозки. М.: Академия, 2009. 208 с. Ovchinnikov M.M., Polishchuk V.P., Grigoriev G.V. Forest Transport: In 2 Vol. Vol. 2. Timber Floating and Ship Transportation. Moscow, Akademiya Publ., 2009. 208 p. (In Russ.).

Посыпанов С.В. Исследование геометрических характеристик плавающей двухъярусной пакетной сплоточной единицы // Изв. СПбЛТА. 2016. Вып. 215. С. 176–191. Posypanov S.V. Investgation of the Geometric Characteristics of a Floating Bilevel Packaged Rafting Unit. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii, 2016, no. 215, pp. 176–191. (In Russ.). https://doi.org/10.21266/2079-4304.2016.215.176-191

Посыпанов С.В. Определение геометрических параметров плавающего транспортного пакета круглых лесоматериалов численным методом // Изв. вузов. Лесн. журн. 2017. № 1. С. 141–153. Posypanov S.V. Numerical Determination of the Geometric Parameters of a Transport Floating Roundwood Bundle. Lesnoy Zhurnal = Russian Forestry Journal, 2017, no. 1, pp. 141–153. (In Russ.). https://doi.org/10.17238/issn0536-1036.2017.1.141

Харитонов В.Я., Посыпанов С.В. Опыт внедрения единого транспортного пакета вместо молевого лесосплава // Изв. вузов. Лесн. журн. 2007. № 1. С. 45–52. Kharitonov V.Ya., Posypanov S.V. Experience of Introducing Transport Package instead of Drift Floating. Lesnoy Zhurnal = Russian Forestry Journal, 2007, no. 1, pp. 45–52. (In Russ.). http://lesnoizhurnal.ru/upload/iblock/3c6/3c66c8d06d36d7b633ef4eb67892e4d6.pdf

Armanini A. Principles of River Hydraulics.Transl. from Italian by G. Zummo. Cham, Springer, 2018. 217 р. https://doi.org/10.1007/978-3-319-68101-6

Davie T., Quinn N.W. Fundamentals of Hydrology. London, Routledge, 2019. 306 р. https://doi.org/10.4324/9780203798942

Guy R.J. Embarcation modulaire pour le transport des grumes par voie d’eau = Modular Craft for the Transport of Logs by Water. Patent FR no. FR 2 882 723 A1, 2005. (In Fr.).

Mokhirev A.P., Pozdnyakova M.O., Medvedev S.O., Mammatov V.O. Assessment of Availability of Wood Resources Using Geographic Information and Analytical Systems (the Krasnoyarsk Territory as a Case Study). Journal of Applied Engineering Science, 2018, vol. 16, iss. 3, pp. 313–319. https://doi.org/10.5937/jaes16-16908

Pandey A., Mishra S.K., Kansal M.L., Singh R.D., Singh V.P. Hydrological Extremes. Cham, Springer, 2021. 446 р. https://doi.org/10.1007/978-3-030-59148-9

Perfiliev P., Zadrauskaite N., Rybak G. Study of Hydrodynamic Resistance of a Raft Composed of the Flat Rafting Units of Various Draft. Proceedings of the 18th International Multidisciplinary Scientific GeoConference SGEM2018. Bulgaria, 2018, pp. 765–772. https://doi.org/10.5593//sgem2018V/1.5/S03.093

Subramanya K. Engineering Hydrology. New Dehli, McGraw-Hill, 2021. 592 р.

Syunev V., Sokolov A., Konovalov A., Katarov V., Seliverstov A., Gerasimov Yu., Karvinen S., Välkky E. Comparison of Wood Harvesting Methods in the Republic of Karelia. Working Papers of the Finnish Forest Research Institute 120. METLA, 2009. 117 p. Available at: http://www.metla.fi/julkaisut/workingpapers/2009/mwp120.htm (accessed 05.03.21).

Tan J. Planning a Forest Road Network by Spatial Data Handling-Network Routing System. Acta Forestalia Fennica, 1992, no. 227, art. 7673. https://doi.org/10.14214/aff.7673

Yukawa Sh. Method for Transporting Timbers by Sea. Patent US no. US 3450279 A, 1969.

Published

2022-07-13

How to Cite

Vasiliev В., and Afonichev Д. “Flexibility Justification of a Raft Made of Raft Units”. Lesnoy Zhurnal (Forestry Journal), no. 4, July 2022, pp. 146-55, doi:10.37482/0536-1036-2022-4-146-155.