Computer Simulation of the Operation of the Recuperative Swivel Bunk Device of a Hauling Tractor with a Timber Drug
DOI:
https://doi.org/10.37482/0536-1036-2022-5-85-99Keywords:
hauling tractor, logging truck, fuel consumption of a logging truck, swivel bunk device, logging road, horizontal acceleration of a logging truck, computer program, computer simulation, timber drug, energy recoveryAbstract
The article validates the necessity of increasing the transportation efficiency of longcut timber (LCT) by hauling tractors with timber drugs during their operation in conditions of poorly equipped logging roads with the presence of irregularities, defects, barriers, as well as frequent turns, ascents and descents. An original scheme of a recuperative swivel bunk device (RSBD) for a hauling tractor (HT) with a timber drug (TD) is designed as a result of earlier research on development and evaluation of various recuperative coupling devices for logging trucks operating in difficult road conditions. A computer program has been developed in order to identify the dependences of change in time of such parameters of the bunk device efficiency as recoverable power and horizontal acceleration of an LCT bundle, as well as to determine the regularities of influence of the studied heights of the logging road bearing area, the driving speed of a logging truck and the inner diameter of longitudinal and transverse hydraulic cylinders of the recuperative device on these parameters. It has been found out that equipping a logging truck with the proposed RSBD is reasonable when LCT transporting, especially in conditions of poorly equipped logging roads. With an increase in speed of the logging truck when it moves in difficult road conditions from 10 to 60 km/h recoverable power increases significantly from 3 to 24 kW, as well as the horizontal acceleration of the LCT bundle relative to HT changes from 0.4 to 2.3 m/s2. It is found that the optimum diameters of transverse and longitudinal hydraulic cylinders of RSBD, providing the maximum recoverable power of 6.7 kW and the average horizontal acceleration of the LCT bundle of 1 m/s2, is 50 mm. The results obtained can be useful to research and design organizations engaged in further improvement of recuperative devices of similar type used for timber road transport.
For citation: Posmetyev V.I., Nikonov V.O., Manukovskii A.Yu., Posmetyev V.V. Computer Simulation of the Operation of the Recuperative Swivel Bunk Device of a Hauling Tractor with a Timber Drug. Lesnoy Zhurnal = Russian Forestry Journal, 2022, no. 5, pp. 85–99. (In Russ.). https://doi.org/10.37482/0536-1036-2022-5-85-99
Downloads
References
Адлер Ю.П., Маркова Е.В., Грановский Ю.В. Планирование эксперимента при поиске оптимальных условий. М.: Наука, 1976. 279 с. Adler Yu.P., Markova E.V., Granovskiy Yu.V. Planning an Experiment in the Search for Optimal Conditions. Moscow, Nauka Publ., 1976. 279 p.
Грановский В.А., Сирая Т.Н. Методы обработки экспериментальных данных при измерениях. Л.: Энергоатомиздат. Ленингр. отд-ние, 1990. 288 с. Granovskiy V.A., Siraya T.N. Methods for Processing Experimental Data in Measurements. Leningrad, Energoatomizdat Publ., 1990. 288 p.
Мудров А.Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. Томск: МП «РАСКО», 1991. 272 с. Mudrov A.E. Numerical Methods for PC in Basic, Fortran and Pascal. Tomsk, MR “RASKO” Publ., 1991. 272 p.
Никонов В.О. Современное состояние, проблемы и пути повышения эффективности лесовозного автомобильного транспорта. Воронеж: ВГЛТУ, 2021. 203 с. Nikonov V. O. Current State, Problems and Ways to Improve the Efficiency of Timber Road Transport: Monograph. Voronezh, VGLTU Publ., 2021. 203 p.
Посметьев В.И., Никонов В.О., Посметьев В.В., Матяшов А.Е. Совершенствование системы рекуперации энергии лесовозного тягача с прицепомроспуском // Лесотехн. журн. 2021. Т. 11, № 2(42). С. 149–165. Posmetyev V.I., Nikonov V.O., Posmetyev V.V., Matyashov A.E. Improvement of the Energy Recovery System of a Timber Tractor with a Lumber Truck. Forestry Engineering Journal, 2021, vol. 11, no. 2(42), pp. 149–165. https://doi.org/10.34220/issn.2222- 7962/2021.2/14
Посметьев В.И., Никонов В.О., Посметьев В.В., Сизьмин И.В. Имитационная модель оценки эффективности лесовозного автопоезда, оснащенного рекуперативным пневмогидравлическим тягово-сцепным устройством // Лесотехн. журн. 2020. Т. 10, № 4(40). С. 181–196. Posmetyev V.I., Nikonov V.O., Posmetyev V.V., Sizmin I.V. Simulation Model for Estimation of Forest Truck Performance Equipped with Recuperative Spring-Hydraulic Fifth-Wheel Coupling. Forestry Engineering Journal, 2020, vol. 10, no. 4(40), pp. 181–196. https://doi.org/10.34220/issn.2222-7962/2020.4/15
Abdelkareem M.A.A., Xu L., Ahmed Ali M.K., El-Daly A.-R.B.M., Hassan M.A., Elagouz A., Bo Y. Analysis of the Prospective Vibrational Energy Harvesting of Heavy-Duty Truck Suspension: A Simulation Approach. Energy, 2019, vol. 173, pp. 332–351. https://doi. org/10.1016/j.energy.2019.02.060
Li J., Zhao J. Energy Recovery for Hybrid Hydraulic Excavators: Flywheel-Based Solutions. Automation in Construction, 2021, vol. 125, art. 103648. https://doi.org/10.1016/j. autcon.2021.103648
Luo D., Wang R., Yu W., Sun Z., Meng X. Theoretical Analysis of Energy Recovery Potential for Different Types of Conventional Vehicles with a Thermoelectric Generator. Energy Procedia, 2019, vol. 158, pp. 142–147. https://doi.org/10.1016/j.egypro.2019.01.061
Morangueira Y.I.A., de C. Pereira J.C. Energy Harvesting Assessment with a Coupled Full Car and Piezoelectric Model. Energy, 2020, vol. 210, art. 118668. https://doi. org/10.1016/j.energy.2020.118668
Pipitone E., Vitale G. A Regenerative Braking System for Internal Combustion Engine Vehicles Using Supercapacitors as Energy Storage Elements – Part 1: System Analysis and Modelling. Journal of Power Sources, 2020, vol. 448, art. 227368. https://doi. org/10.1016/j.jpowsour.2019.227368
Pugi L., Pagliali M., Nocentini A., Lutzemberger G., Pretto A. Design of a Hydraulic Servo-Actuation Fed by a Regenerative Braking System. Applied Energy, 2017, vol. 187, pp. 96–115. https://doi.org/10.1016/j.apenergy.2016.11.047
Rakov V., Kapustin A., Danilov I. Study of Braking Energy Recovery Impact on Cost-Efficiency and Environment Safety of Vehicle. Transportation Research Procedia, 2020, vol. 50, pp. 559–565. https://doi.org/10.1016/j.trpro.2020.10.067
Ranjan P., Wrat G., Bhola M., Mishra S.Kr., Das J. A Novel Approach for the Energy Recovery and Position Control of a Hybrid Hydraulic Excavator. ISA Transactions, 2020, vol. 99, pp. 387–402. https://doi.org/10.1016/j.isatra.2019.08.066
Read M.G., Smith R.A., Pullen K.R. Optimization of Flywheel Energy Storage Systems with Geared Transmission for Hybrid Vehicles. Mechanism and Machine Theory, 2015, vol. 87, pp. 191–209. https://doi.org/10.1016/j.mechmachtheory.2014.11.001
Silva Bravo R.R., De Negri V.J., Martins Oliveira A.A. Design and Analysis of a Parallel Hydraulic-Pneumatic Regenerative Braking System for Heavy-Duty Hybrid Vehicles. Applied Energy, 2017, vol. 225, pp. 60–77. https://doi.org/10.1016/j.apenergy.2018.04.102
Yu W., Wang R. Development and Performance Evaluation of a Comprehensive Automotive Energy Recovery System with a Refined Energy Management Strategy. Energy, 2019, vol. 189, art. 116365. https://doi.org/10.1016/j.energy.2019.116365
Yu W., Wang R., Zhou R. A Comparative Research on the Energy Recovery Potential of Different Vehicle Energy Regeneration Technologies. Energy Procedia, 2019, vol. 158, pp. 2543–2548. https://doi.org/10.1016/j.egypro.2019.02.001
Zhang Y., Zhang X., Zhan M., Guo K., Zhao F., Liu Z. Study on a Novel Hydraulic Pumping Regenerative Suspension for Vehicles. Journal of the Franklin Institute, 2015, vol. 352, iss. 2, pp. 485–499. https://doi.org/10.1016/j.jfranklin.2014.06.005
Zou J., Guo X., Abdelkareem M.A.A., Xu L., Zhang J. Modelling and Ride Analysis of a Hydraulic Interconnected Suspension Based on the Hydraulic Energy Regenerative Shock Absorbers. Mechanical Systems and Signal Processing, 2019, vol. 127, pp. 345–369. https:// doi.org/10.1016/j.ymssp.2019.02.047