Modeling of Critical Local Deformations of Growing Tree Bark under Wind Loads
DOI:
https://doi.org/10.37482/0536-1036-2022-5-100-113Keywords:
wind load on a tree, wind load on a plantation, wind load impact on wood quality, bark deformations, target forest cultivation, modeling of deformationsAbstract
The interaction between wind loads and forest plantations has been fairly well understood. A large amount of valuable scientific and practical information has been obtained and published so far in this field. There are some known data on wind load damage to plantations, its effect on their growth, and the ability of forest plantations to reduce wind speed and force. Nevertheless, the issues of wind impact on both individual trees and forested areas remain relevant. Analysis of the literature and Internet resources showed that the research has left out the issue of the wind load impact on the grown wood quality. Multi-year observations and a wind rose created using these observations enable the determination of the prevailing wind strength and direction for each area. Knowing the features of the wind load impact on the quality of timber after logging, it is possible to predict the percentage of the yield of commercial and low-quality wood, and to purposefully influence this parameter in plantation forest growing by setting out the planting material in accordance with these data. The article shows the developed method for theoretical estimation of the probability of occurrence of critical bark deformations in the compressed zone, which appears when bending a growing tree due to wind load. Classical studies of the critical state of compressed rods on an elastic base were used as the theoretical basis of the method. A part of growing tree bark plays the role of a rod, while cambium and other living cells between the bark and the trunk wood play the role of the elastic base. A correlation simple enough for practical application is proposed in order to obtain quantitative estimates. Adequacy of the modeling results is confirmed by their consistency with the experimental data. The application of the developed methodology is shown on the examples.
Acknowledgements: The authors gratefully acknowledge the valuable insights and comments made by colleagues at the Scientific School “Innovations in Logging Industry and Forestry” in the preparation of this paper.
For citation: Kolesnikov G.N., Grigoreva O.I., Grigorev I.V., Makuev V.A., Storodubtseva T.N., Shvetsova V.V. Modeling of Critical Local Deformations of Growing Tree Bark under Wind Loads. Lesnoy Zhurnal = Russian Forestry Journal, 2022, no. 5, pp. 100–113. (In Russ.). https://doi.org/10.37482/0536-1036-2022-5-100-113
Downloads
References
Вольмир А.С. Устойчивость деформируемых систем. 2-е изд., перераб. и доп. М.: Наука, 1967. 984 с. Vol’mir A.S. Stability of Deformable Systems. Moscow, Nauka Publ., 1967. 984 p. (In Russ.).
Герц Э.Ф., Уразова А.Ф., Курдышева Е.В., Уразов П.Н. Эффективность защитных лесных полос вдоль железной дороги // Вестн. АГАТУ. 2021. № 1(1). С. 56–60. Gerts E.F., Urazova A.F., Kurdysheva E.V., Urazov P.N. Effectiveness of Protective Forest Strips along the Railway. Vestnik ASAU, 2021, no. 1(1), pp. 56–60. (In Russ.).
Глухих В.Н., Черных А.Г. Обоснование овальности формы сечений стволов деревьев при их росте с наклоном // Изв. вузов. Лесн. журн. 2020. № 5. С. 166–175. Glukhikh V.N., Chernykh A.G. Reasoning of Tree Cross Sections Oval Shaping while Growing with an Inclination. Lesnoy Zhurnal = Russian Forestry Journal, 2020, no. 5, pp. 166–175. (In Russ.). https://doi.org/10.37482/0536-1036-2020-5-166-175
Григорьева О.И., Григорьев И.В., Давтян А.Б., Иванов В.А., Гринько О.И., Швабова Н.В., Калита А.Ю. Влияние ветровой нагрузки на образование пороков в растущих деревьях // Системы. Методы. Технологии. 2021. № 2(50). С. 63–69. Grigorjeva O.I., Grigorjev I.V., Davtyan A.B., Ivanov V.A., Grinko O.I., Shvabova N.V., Kalita A.Yu. Influence of Wind Load on the Formation of Defects in Growing Trees. Systems. Methods. Technologies, 2021, no. 2(50), pp. 63–69. (In Russ.). https://doi. org/10.18324/2077-5415-2021-2-63-69
Куницкая О.А., Никитина Е.И. Экологические аспекты выборочных рубок леса // Эколого-экономические и технологические аспекты устойчивого развития Республики Беларусь и Российской Федерации: сб. ст. III Междунар. науч.-техн. конф. «Минские научные чтения-2020»: в 3 т. Минск: БГТУ, 2021. Т. 1. С. 286–291. Kunitskaya O.A., Nikitina E.I. Ecological Aspects of Shelterwood Cutting. Ecological, Economic and Technological Issues of Sustainable Development of the Republic of Belarus and the Russian Federation: Collection of Academic Papers of the III International Scientific and Technical Conference “Minsk Scientific Readings-2020”: In 3 Vol. Minsk, BelSTU Publ., 2021, vol. 1, pp. 286–291. (In Russ.).
Куницкая О.А., Швецова В.В., Тихонов Е.А. Современное деревянное судостроение в России // Ремонт. Восстановление. Модернизация. 2021. № 6. С. 3–12. Kunitskaya O.A., Shvetsova V.V., Tikhonov E.A. Modern Wooden Shipbuilding in Russia. Remont. Vosstanovlenie. Modernizatsiya = Repair. Recovery. Modernization, 2021, no. 6, pp. 3–12. (In Russ.). https://doi.org/10.31044/1684-2561-2021-0-6-3-12
Куницкая О.А., Колесников Г.Н., Лукин А.Е., Григорьев И.В. Повышение эффективности групповой окорки длинномерных лесоматериалов. Петрозаводск: ПетрГУ, 2016. 107 с. Kunitskaya O.A., Kolesnikov G.N., Lukin A.E., Grigorev I.V. Improving the Efficiency of Group Debarking of Long-Cut Timber. Petrozavodsk, PetrSU Publ., 2016. 107 p. (In Russ.).
Никитина Т.А., Шестаков Ю.Д., Лабудин Б.В., Куницкая О.А., Тихонов Е.А., Калита А.Ю. Прочностной ресурс древесины лиственницы Беломорского Севера при сжатии в главных и диагональных осях анизотропии // Деревообраб. пром-сть. 2020. № 4. С. 21–31. Nikitina T.A., Shestakov Yu.D., Labudin B.V., Kunitskaya O.A., Tikhonov E.A., Kalita A.Yu. Strength Resource of Larch Wood of the White Sea North under Compression in the Main and Diagonal Axes of Anisotropy. Derevoobrabativaushaya promishlennost’ = Woodworking industry, 2020, no. 4, pp. 21–31. (In Russ.).
Тамби А.А., Юркова О.В., Куницкая О.А., Степанищева М.В. Исследование влияния физических свойств и строения древесины сосны на ее прочность // Системы. Методы. Технологии. 2017. № 4(36). С. 157–161. Tambi A.A., Yurkova O.V., Kunitskaya O.A., Stepanishcheva M.V. Research of the Influence of the Physical Properties and Structure of Pine Wood on Its Strength. Systems. Methods. Technologies, 2017, no. 4(36), pp. 157–161. (In Russ.). https://doi. org/10.18324/2077-5415-2017-4-157-161
Цывин М.М. Использование древесной коры. М.: Лесн. пром-сть, 1973. 94 с. Tsyvin M.M. The Use of Tree Bark. Moscow, Lesnaya promyshlennost’ Publ., 1973. 94 p. (In Russ.).
Chahal A., Ciolkosz D. A Review of Wood-Bark Adhesion: Methods and Mechanics of Debarking for Woody Biomass. Wood and Fiber Science, 2019, vol. 51, no. 3, pp. 288–299. https://doi.org/10.22382/wfs-2019-027
Falťan V., Katina S., Minár J., Polčák N., Bánovský M., Maretta M., Zámečník S., Petrovič F. Evaluation of Abiotic Controls on Windthrow Disturbance Using a Generalized Additive Model: A Case Study of the Tatra National Park, Slovakia. Forests, 2020, vol. 11, iss. 12, art. 1259. https://doi.org/10.3390/f11121259
Gaffrey D., Kniemeyer O. The Elasto-Mechanical Behaviour of Douglas Fir, Its Sensitivity to Tree-Specific Properties, Wind and Snow Loads, and Implications for Stability – A Simulation Study. Journal of Forest Science, 2002, vol. 48, no. 2, pр. 49–69. https://doi. org/10.17221/11856-JFS
Kärhä K., Anttonen T., Poikela A., Palander T., Laurén A., Peltola H., Nuutinen Y. Evaluation of Salvage Logging Productivity and Costs in Windthrown Norway Spruce-Dominated Forests. Forests, 2018, vol. 9, iss. 5, art. 280. https://doi.org/10.3390/f9050280
Krišāns O., Matisons R., Kitenberga M., Donis J., Rust S., Elferts D., Jansons Ā. Wind Resistance of Eastern Baltic Silver Birch (Betula pendula Roth.) Suggests Its Suitability for Periodically Waterlogged Sites. Forests, 2021, vol. 12, iss. 1, art. 21. https://doi. org/10.3390/f12010021
Kunickaya O., Runova E., Chzhan S., Zhuk A., Markov O., Garus I., Nikiforova V., Ivanov V. Improving Impregnation Techniques for Fine Coniferous and Non-Coniferous Wood. Journal of Applied Engineering Science, 2020, vol. 18, no. 4, pp. 520–528. https://doi. org/10.5937/jaes0-27654
Kunickaya O., Tanyukevich V., Khmeleva D., Kulik A., Runova E., Savchenkova V., Voronova A., Lavrov M. Cultivation of the Targeted Forest Plantations. Journal of Environmental Treatment Techniques, 2020, vol. 8, iss. 4, pp. 1385–1393. https://doi.org/10.47277/ JETT/8(4)1393
Kunickaya O.A., Shadrin A.A., Burmistrova O.N., Markov O.B., Gasparyan G.D., Davtyan A.B., Lapshina M.L., Sleptsova N.A., Ustinova V.V., Kruzhilin S.N. Wood Treatment with Hydro Impact: A Theoretical and Experimental Study. Bulgarian Journal of Agricultural Science, 2019, vol. 25, suppl. 2, pp. 158–166.
Kunickaya O.A., Shadrin A.A., Kremleva L.V., Mueller O.D., Ivanov V.A., Bederdinova O.I., Kruchinin I.N., Burgonutdinov A.M., Zakharova O.I., Struchkov N.A. Modeling of the Processes of the Modification of the Current Volume Warming by Drainage and Pressing. Bulgarian Journal of Agricultural Science, 2019, vol. 25, suppl. 2, pp. 167–177.
Mayr S., Bertel C., Dämon B., Beikircher B. Static and Dynamic Bending Has Minor Effects on Xylem Hydraulics of Conifer Branches (Picea abies, Pinus sylvestris). Plant, Cell & Environment, 2014, vol. 37, iss. 9, рр. 2151–2157. https://doi.org/10.1111/pce.12307
Morkovina S.S., Kunickaya O., Dolmatova L., Markov O., Nguyen V.L., Baranova T., Shadrina S., Grin’ko O. Comparative Analysis of Economic Aspects of Growing Seedlings with Closed and Open Root Systems: The Experience of Russia. Asian Journal of Water, Environment and Pollution, 2021, vol. 18, iss. 2, pp. 19–26.
Peltola H., Kellomäki S., Hassinen A., Granander M. Mechanical Stability of Scots Pine, Norway Spruce and Birch: An Analysis of Tree-Pulling Experiments in Finland. Forest Ecology and Management, 2000, vol. 135, iss. 1-3, рр. 143–153. https://doi.org/10.1016/ S0378-1127(00)00306-6
Trockenbrodt M. Survey and Discussion of the Terminology Used in Bark Anatomy. IAWA Bulletin, 1990, vol. 11(2), рр. 141–166. https://doi.org/10.1163/22941932-90000511
Urquiza Muñoz J.D., Magnabosco Marra D., Negrón-Juarez R.I., Tello-Espinoza R., Alegría-Muñoz W., Pacheco-Gómez T., Rifai S.W., Chambers J.Q., Jenkins H.S., Brenning A., Trumbore S.E. Recovery of Forest Structure Following Large-Scale Windthrows in the Northwestern Amazon. Forests, 2021, vol. 12, iss. 6, art. 667. https://doi.org/10.3390/ f12060667
Wenig C., Dunlop J.W.C., Hehemeyer-Cürten J., Reppe F.J., Horbelt N., Krauthausen K., Fratzl P., Eder M. Advanced Materials Design Based on Waste Wood and Bark. Philosophical Transactions of the Royal Society A, 2021, vol. 379, iss. 2206, art. 20200345. https://doi.org/10.1098/rsta.2020.0345