Quality Control of Activated Carbon by the Nuclear Magnetic Resonance Method

Authors

DOI:

https://doi.org/10.37482/0536-1036-2022-5-173-185

Keywords:

activated carbon, pyrolysis, nuclear magnetic resonance, proton density, pyrolysis degree

Abstract

The production of activated carbon by pyrogenetic decomposition is a complex high-temperature process that involves several stages. The quality of the produced activated carbon primarily depends on the moisture content of raw material and the degree of removal of impurities from the solid carbon residue, operational assessment of which is rather difficult due to the production specifics. The use of NMR relaxometry methods can significantly speed up the process of measuring these parameters in at-line, on-line and in situ conditions. The research aims at determining the absolute moisture content of the raw material, intermediate and finished products, as well as controlling their pyrolysis degree at different stages of activated carbon production via proton density. Samples of the lignocellulosic group (from wet raw material to the finished product) were the research objects. NMR experiments with the Magic Sandwich Echo (MSE) pulse sequence were carried out for measuring the moisture content and proton density of the samples. The study revealed an unambiguous correlation between the values of proton density and the pyrolysis degree of the samples. The experimental results can be used in further improvement of the proposed methods for estimating the specified parameters. It was found that the MSE experiment makes it possible to determine quite accurately the moisture content in both the initial plant raw material and the carbonization products, including activated carbon. The paper presents data on the dynamics of changes in the proton density of samples of plant raw materials during thermal decomposition. A direct correlation was found between changes in the proton density of the samples and their specific density during thermal processing. The proton density of the raw material samples has different values, while the proton density of the carbon samples varies much less. This observation shows that chemicals are being removed from the samples, causing the proton density to decrease. The research results will improve the systems of intermediate and final control in the process of obtaining activated carbon by thermal processing.
Acknowledgments: The research was carried out using the equipment of the Center for Collective Use “Nanomaterials and Nanotechnologies” of the Kazan National Research Technological University with the financial support of the project by the Ministry of Science and Higher Education of the Russian Federation within the framework of grant No. 075-15-2021-699.

For citation: Safin R.G., Sotnikov V.G., Grunin L.Yu., Ivanova M.S., Ziatdinova D.F. Quality Control of Activated Carbon by the Nuclear Magnetic Resonance Method. Lesnoy Zhurnal = Russian Forestry Journal, 2022, no. 5, pp. 173–185. (In Russ.). https://doi.org/10.37482/0536-1036-2022-5-173-185

Downloads

Download data is not yet available.

Author Biographies

Rushan G. Safin, Kazan National Research Technological University

Doctor of Engineering, Prof.

 

Viktor G. Sotnikov, Kazan National Research Technological University

Postgraduate Student

 

Leonid Yu. Grunin, Volga State University of Technology

Candidate of Chemistry, Assoc. Prof.

 

Maria S. Ivanova, Volga State University of Technology

Postgraduate Student

 

Dilyara F. Ziatdinova, Kazan National Research Technological University

Doctor of Engineering, Prof.

 

References

Гогелашвили Г.Ш., Вартапетян Р.Ш., Ладычук Д.В., Хозина Е.В., Грунин Ю.Б. Энергетические характеристики адсорбированной воды в активных углях по данным ЯМР-релаксации // Журн. физ. химии. 2010. Т. 84, № 2. С. 327–331. Gogelashvili G.Sh., Vartapetyan R.Sh., Ladychuk D.V., Khozina E.V., Grunin Yu.B. Energy Characteristics of Adsorbed Water in Activate Carbons according to NMR Relaxation Data. Zhurnal fizicheskoi khimii = Russian Journal of Physical Chemistry A, 2010, vol. 84, no. 2, pp. 327–331. (In Russ.). https://doi.org/10.1134/S0036024410020196

Гогелашвили Г.Ш., Ладычук Д.В., Грунин Ю.Б., Гордеев М.Е., Абзальдинов Х.С. Исследование влияния температуры на состояние активной поверхности микропористых активных углей импульсным методом ЯМР // Вестн. технол. ун-та. 2015. Т. 18, № 13. С. 30–33. Gogelashvili G.Sh., Ladychuk D.V., Grunin Yu.B., Gordeev M.E., Abzaldinov Kh.S. A Study of the Temperature Effect on the State of the Active Surface of Microporous Activated Carbons by the pulsed NMR method. Bulletin of the Technological University, 2015, vol. 18, no. 13, pp. 30–33. (In Russ.).

Гогелашвили Г.Ш., Ладычук Д.В., Хозина Е.В., Грунин Ю.Б., Ярошевская Х.М. Состояние сорбированной воды в микропористых активных углях по данным ЯМРрелаксации // Вестн. технол. ун-та. 2015. Т. 18, № 4. С. 50–53. Gogelashvili G.Sh., Ladychuk D.V., Khozina E.V., Grunin Yu.B., Yaroshevskaya H.M. The State of Sorbed Water in Microporous Activated Carbons according to NMR Relaxation Data. Bulletin of the Technological University, 2015, vol. 18, no. 4, pp. 50–53. (In Russ.).

Гогелашвили Г.Ш., Хозина Е.В., Вартапетян Р.Ш., Ладычук Д.В., Грунин Ю.Б. Определение размера микропор активных углей импульсным методом ЯМР // Журн. физ. химии. 2011. Т. 85, № 7. С. 1343–1347. Gogelashvili G.Sh., Khozina E.V., Vartapetyan R.Sh., Ladychuk D.V., Grunin Yu.B. Determining the Sizes of Micropores in Activated Charcoals by the Pulsed NMR Method. Zhurnal fizicheskoi khimii = Russian Journal of Physical Chemistry A, 2011, vol. 85, no. 7, pp. 1343–1347. (In Russ.). https://doi.org/10.1134/S0036024411070089

Сафин Р.Г., Сотников В.Г., Зиатдинова Д.Ф. Пирогенетическая переработка органических отходов текстильной промышленности в адсорбенты // Изв. вузов. Технология текстил. пром-сти. 2021. № 5(395). С. 229–235. Safin R.G., Sotnikov V.G., Ziatdinova D.F. Textile Industry Organic Waste Pyrogenetic Processing into Adsorbents. Textile Industry Technology, 2021, no. 5(395), pp. 229–235. (In Russ.). https://doi.org/10.47367/0021-3497_2021_5_229

Agrafioti E., Bouras G., Kalderis D., Diamadopoulos E. Biochar Production by Sewage Sludge Pyrolysis. Journal of Analytical and Applied Pyrolysis, 2013, vol. 101, pp. 72–78. https://doi.org/10.1016/j.jaap.2013.02.010

Bridle T.R., Pritchard D. Energy and Nutrient Recovery from Sewage Sludge via Pyrolysis. Water Science and Technology, 2004, vol. 50, iss. 9, pp. 169–175. https://doi. org/10.2166/wst.2004.0562

Carey D.E., McNamara P.J., Zitomer D.H. Biochar from Pyrolysis of Biosolids for Nutrient Adsorption and Turfgrass Cultivation. Water Environment Research, 2015, vol. 87, iss. 12, pp. 2098–2106. https://doi.org/10.2175/106143015X14362865227391

Grunin Yu.B., Grunin L.Yu., Gal’braikh L.S., Sheveleva N.N., Masas D.S. Dispersion Peculiarities of Crystalline Cellulose upon Its Moistening. Fibre Chemistry, 2018, vol. 49, no. 5, pp. 321–326. https://doi.org/10.1007/s10692-018-9890-6

Grunin Yu.B., Grunin L.Yu., Ivanova M.S., Masas D.S. Features of the Structural Organization and Sorption Properties of Cellulose. Fibre Chemistry, 2020, vol. 51, no. 5, pp. 325–332. https://doi.org/10.1007/s10692-020-10106-9

Gogelashvili G.Sh., Vartapetyan R.Sh., Ladychuk D.V., Grunin Yu.B., Khozina E.V. Specific Features of the Adsorption and Nuclear Magnetic Relaxation of Water Molecules in Active Carbons. 1. Relation between the Spin-Spin Relaxation of Adsorbed Water Molecules and Structural Parameters of Microporous Active Carbons. Colloid Journal, 2003, vol. 65, iss. 5, pp. 545–551. https://doi.org/10.1023/A:1026159420171

Gogelashvili G.Sh., Vartapetyan R.Sh., Ladychuk D.V., Grunin Yu.B., Khozina E.V. Specific Features of the Adsorption and Nuclear Magnetic Relaxation of the Water Molecules in Active Carbons. Colloid Journal, 2004, vol. 66, iss. 3, pp. 271–276. https://doi.org/10.1023/ B:COLL.0000030835.40521.72

Guo J.-C., Zhou H.-Y., Zeng J., Wang K.-J., Lai J., Liu Y.-X. Advances in LowField Nuclear Magnetic Resonance (NMR) Technologies Applied for Characterization of Pore Space Inside Rocks: A Critical Review. Petroleum Science, 2020, no. 17, pp. 1281–1297. https://doi.org/10.1007/s12182-020-00488-0

Lewandowski W.M., Radziemska E., Ryms M., Ostrowski P. Modern Methods of Thermochemical Biomass Conversion into Gas, Liquid and Solid Fuels. Ecological Chemistry and Engineering S, 2011, vol. 18, pp. 39–47. https://doi.org/10.1002/chin.201238271

Liu Z., Hughes M., Tong Y., Zhou J., Kreutter W., Valtierra D., Singer S., Zitomer D., McNamara P. Enhanced Energy and Resource Recovery via Synergistic Catalytic Pyrolysis of Byproducts from Thermal Processing of Wastewater Solids. Renewable Energy, 2021, vol. 177, pp. 475–481. https://doi.org/10.1016/j.renene.2021.05.125

Maus A., Hertlein C., Saalwächter K. A Robust Proton NMR Method to Investigate Hard/Soft Ratios, Crystallinity, and Component Mobility in Polymers. Macromolecular Chemistry and Physics, 2006, vol. 207, pp. 1150–1158. https://doi.org/10.1002/ macp.200600169

Pieruccini M., Sturniolo S., Corti M., Rigamonti A. A Novel Analysis for the NMR Magic Sandwich Echo in Polymers: Application to the α-Relaxation in Polybutadiene. The European Physical Journal B, 2015, vol. 88, art. 283. https://doi.org/10.1140/epjb/e2015- 60417-6

Ozkan A., Kinney K., Katz L., Berberoglu H. Reduction of Water and Energy Requirement of Algae Cultivation Using an Algae Biofilm Photobioreactor. Bioresource Technology, 2012, vol. 114, pp. 542–548. https://doi.org/10.1016/j.biortech.2012.03.055

Tremel A., Becherer D., Fendt S., Gaderer M., Spliethoff H. Performance of Entrained Flow and Fluidised Bed Biomass Gasifiers on Different Scales. Energy Conversion and Management, 2013, vol. 69, pp. 95–106. https://doi.org/10.1016/j.enconman.2013.02.001

Trubetskaya A., Souihi N., Umeki K. Categorization of Tars from Fast Pyrolysis of Pure Lignocellulosic Compounds at High Temperature. Renewable Energy, 2019, vol. 141, pp. 751–759. https://doi.org/10.1016/j.renene.2019.04.033

Umeki K., Häggström G., Bach-Oller A., Kirtania K., Furusjö E. Reduction of Tar and Soot Formation from Entrained-Flow Gasification of Woody Biomass by Alkali Impregnation. Energy and Fuels, 2017, vol. 31, pp. 5104–5110. https://doi.org/10.1021/acs. energyfuels.6b03480

Published

2022-10-28

How to Cite

Safin Р. ., Sotnikov В. ., Grunin Л. ., Ivanova М. ., and Ziatdinova Д. . “Quality Control of Activated Carbon by the Nuclear Magnetic Resonance Method”. Lesnoy Zhurnal (Forestry Journal), no. 5, Oct. 2022, pp. 173-85, doi:10.37482/0536-1036-2022-5-173-185.

Issue

Section

TECHNOLOGY OF WOOD CHEMICAL PROCESSING AND PRODUCTION OF WOOD-POLYMER COMPOSITES

Most read articles by the same author(s)