Optimizing the Forest Firefighting Vehicle Operation Modes
DOI:
https://doi.org/10.37482/0536-1036-2022-6-139-152Keywords:
forest fires, forest firefighting vehicle, operation modes, optimizing operation parameters,, environmental safetyAbstract
The article considers specialized forest firefighting vehicles required to extinguish forest fires. An overview of modern domestic and foreign forest firefighting equipment and techniques for fighting forest fires is presented. Rapid heating of the cabin enclosure surfaces is a common weakness of the thermal shielding of a forest firefighting vehicle when extinguishing fires in extreme conditions. Therefore, the following issues remain relevant: problem of increasing the forest firefighting vehicle operation efficiency when extinguishing fires; issues of ensuring the operability and optimization of operation parameters and modes; development and creation of new fire protection materials; improving the cabin ergonomics and operator safety. The paper provides substantiation for optimizing the parameters and operation modes of a forest firefighting vehicle on the basis of the given tactical scheme of forest fire extinguishing. The objective function of the mathematical optimization problem is the production capacity, i.e. the area that can be extinguished by a forest fire vehicle. As control factors we consider following parameters of main and auxiliary equipment: capacity of pumps supplying water and foam/water mixtures; water tank capacity; estimated time of forest fire extinguishing and flame retardant properties of the forest firefighting vehicle structure elements, particularly spontaneous ignition temperature of cabin enclosure thermal insulation. The mathematical optimization problem is solved by the analytical method. Methods of computational mathematics and applied programming are used for numerical calculations and software implementation. The solution of the problem enables to calculate the production capacity of a forest firefighting vehicle, determine the required flame retardant properties of the cabin enclosure surfaces and propose new structural fire-resistant materials, recommend the main and auxiliary equipment. Improving the ergonomics of cabins during firefighting will improve the safety of the operator’s working conditions. The effective operation of a forest firefighting vehicle while firefighting reduces the damage to the environment and the losses caused by the destruction of millions hectares of forest.
For citation: Pitukhin E.A., Rogozin S.S. Optimizing the Forest Firefighting Vehicle Operation Modes. Lesnoy Zhurnal = Russian Forestry Journal, 2022, no. 6, pp. 139–152. (In Russ.). https://doi.org/10.37482/0536-1036-2022-6-139-152
Downloads
References
ЕМИСС. Режим доступа: https://fedstat.ru/ (дата обращения: 06.11.21). The Unified Interdepartmental Statistical Information System (UISIS). (In Russ.).
Мазур Д.И., Ермолина М.А. Организационно-правовые меры предупреждения пожаров в России // Russian Studies in Law and Politics. 2020. Т. 4, № 3. С. 20–28. Mazur D.I., Ermolina M.A. Organizational and Legal Measures to Prevent Forest Fires in Russia. Russian Studies in Law and Politics, 2020, vol. 4, no. 3, pp. 20–28. (In Russ.).
Методики расчета сил и средств для тушения пожаров / сост. Н.Ю. Клименти. Волгоград: ВолгГАСУ, 2013. 28 с. Methods for Calculating Forces and Means for Extinguishing Fires. Content by N.Yu. Klimenti. Volgograd, VSTU Publ., 2013. 28 р. (In Russ.).
Орловский С.Н., Бердникова Л.Н. Оптимизация технологий и средств пожаротушения при борьбе с лесными пожарами // Вестн. КрасГАУ. 2018. № 2(137). C. 84–89. Orlovsky S.N., Berdnikova L.N. The Optimization of Fire Extinguishment Techniques and Means in Forest Fire Fighting. The Bulletin of KrasGAU, 2018, no. 2(137), pp. 84–89. (In Russ.).
Повзик Я.С. Пожарная тактика. М.: Спецтехника, 2004. 416 с. Povzik Ya.S. Fire Fighting Tactics. Moscow, Spetstekhnika Publ., 2004. 416 p. (In Russ.).
Сосновчик Ю.Ф. Закономерность развития низовых лесных пожаров, метод профилактики и предотвращения распространения низового лесного пожара // Вавиловские чтения – 2017: сб. ст. междунар. науч.-практ. конф., посвящ. 130-й годовщине со дня рождения акад. Н.И. Вавилова. Саратов: Саратов. ГАУ, 2017. C. 259–266. Sosnovchik Yu.F. Regularity of Development of Ground Forest Fires, Techniques of Prevention and Suppression of Ground Forest Fire. Vavilov Readings-2017: Collection of Academic Papers of the International Scientific and Practical Conference Dedicated to the 130th Anniversary since the Birth of Academician N.I. Vavilov. Saratov, SGAU Publ., 2017, pp. 259–266. (In Russ.).
Станкевич Т.С. Прогнозирование пространственного поведения лесного пожара при неопределенности и нестационарности процесса // Изв. вузов. Лесн. журн. 2021. № 1. С. 20–34. Stankevich T.S. Forecasting the Spatial Behavior of a Forest Fire at Uncertainty and Instability of the Process. Lesnoy Zhurnal = Russian Forestry Journal, 2021, no. 1, pp. 20–34. (In Russ.). https://doi.org/10.37482/0536-1036-2021-1-20-34
Устинов А.С., Рогозин С.С., Питухин Е.А. Разработка и реализация математической модели теплового воздействия на ограждающие конструкции, покрытые огнезащитным композитным материалом // Системы. Методы. Технологии. 2018. № 3(39). С. 41–48. Ustinov A.S., Rogozin S.S., Pitukhin E.A. Development and Implementation of a Mathematical Model of the Thermal Effect on Enclosing Structures Covered with Fire-Retardant Composite Material. Systems. Methods. Technologies, 2018, no. 3(39), pp. 41–48. (In Russ.). https://doi.org/10.18324/2077-5415-2018-3-41-48
Aslantas M. Finding a Solution to an Optimization Problem and an Application. Journal of Optimization Theory and Applications, 2022, vol. 194, pp. 121–141. https://doi.org/10.1007/s10957-022-02011-4
Bucur D., Buttazzo G., Nitsch C. Two Optimization Problems in Thermal Insulation. Notices of the American Mathematical Society, 2017, vol. 64, no. 8, pp. 830–835. https://doi.org/10.1090/noti1557
Chandrakantha L. Using Excel Solver in Optimization Problems. Electronic Proceedings of the 23th Annual International Conference on Technology in Collegiate Mathematics (ICTCM). Denver, CO, 2011, pp. 42–49.
Chuvieco E., Aguadoa I., Yebraa M., Nieto H., Salas J., Martín M.P. et al. Development of a Framework for Fire Risk Assessment Using Remote Sensing and Geographic Information System Technologies. Ecological Modelling, 2010, vol. 221, iss. 1, pp. 46–58. https://doi.org/10.1016/j.ecolmodel.2008.11.017
Cordeiro Ramalho A.H., da Silva E.F., Martins Silva J.P., Fiedler N.C., Maffioletti F.D., Biazatti L.D., Moreira T.R., Juvanhol R.S., dos Santos A.R. Allocation of Water Reservoirs to Fight Forest Fires according to the Risk of Occurrence. Journal of Environmental Management, 2021, vol. 296, art. 113122. https://doi.org/10.1016/j.jenvman.2021.113122
International Standard. ISO 834–12:2012. Fire Resistance Tests. Elements of Building Construction. Part 12: Specific Requirements for Separating Elements Evaluated on Less than Full Scale Furnaces. 2012. 9 p.
Kulkarni A.J., Krishnasamy G., Abraham A. Cohort Intelligence: A Socio-Inspired Optimization Method. Cham, Springer, 2017. 134 p. https://doi.org/10.1007/978-3-319-44254-9
Momeni M., Soleimani H., Shahparvari S., Afshar-Nadjafi B. Coordinated Routing System for Fire Detection by Patrolling Trucks with Drones. International Journal of Disaster Risk Reduction, 2022, vol. 73, art. 102859. https://doi.org/10.1016/j.ijdrr.2022.102859
Schittkowski K., Zillober C. Nonlinear Programming: Algorithms, Software, and Applications. System Modeling and Optimization. Ed. by J. Cagnol, J.P. Zolésio. Boston, MA, Springer, 2005, vol. 166, pp. 73–107. https://doi.org/10.1007/0-387-23467-5_5
Ustinov A., Pitukhin E. Improving the Efficiency of Protection of the Forest Fire Machine against Forest Fires with the Help of Composite Materials. Materials Science Forum. Switzerland, Trans. Tech. Publications Ltd, 2020, vol. 992, pp. 700–705. https://doi.org/10.4028/www.scientific.net/MSF.992.700
Wu P., Chu F., Che A., Zhou M. Bi-Objective Scheduling of Fire Engines for Fighting Forest Fires: New Optimization Approaches. IEEE Transactions on Intelligent Transportation Systems, 2018, vol. 19, iss. 4, pp. 1140–1151. https://doi.org/10.1109/TITS.2017.2717188
Zhou J., Tu C., Reniers G. Simulation Analysis of Fire Truck Scheduling Strategies for Fighting Oil Fires. Journal of Loss Prevention in the Process Industries, 2020, vol. 67, art. 104205. https://doi.org/10.1016/j.jlp.2020.104205