Theoretical and Experimental Substantiation of the Nature of Interaction between Modified Binders and Wood
DOI:
https://doi.org/10.37482/0536-1036-2022-6-153-163Keywords:
phenol formaldehyde resin, urea formaldehyde resin, modified adhesive, interaction between modified adhesive and wood, mechanism of interaction between modified adhesive and wood, surface phenomena at the interface, liquid adhesive penetration depthAbstract
There are numerous methods for analyzing surface phenomena when bonding wood materials, mutual arrangement of pores in the wood substrate, and depth of liquid adhesive penetration into wood. Electron microscopic methods such as atomic force and scanning tunneling microscopy are used along with optical methods. They allow evaluating the influence of factors describing the interaction between the liquid adhesive molecules and the porous wood surface. Phenol formaldehyde resin modified with pectol and urea formaldehyde resin modified with lignosulfonates were used for substantiation of the interaction mechanism between modified adhesives and wood. Electron microscopy was used to study the depth of adhesive penetration into veneer. The plywood was produced using modified urea and phenol formaldehyde adhesives. After conditioning, samples with a thickness of 0.025 mm were cut out and examined with a scanning electron microscope. The article shows that the interaction between liquid phenol formaldehyde adhesive modified with pectol and wood results in a sequential increase in the molecular weight of the substances and, consequently, in the penetration degree (depth). The studied wood species (birch, pine and larch) and modified thermosetting urea and phenol formaldehyde adhesives are polar materials (adhesive interacts with wood molecules with the formation of intermolecular bonds, including hydrogen bonds). The molecular weight growth and the freely joined nature of the main chain (liquid modified adhesive macromolecules), which contains a large number of polar functional groups (adhesive and wood), promote intermolecular association. The formation of an adhesive bond between urea formaldehyde adhesive modified with lignosulfonates and wood occurs due to chemical interaction between hydroxyl groups of cellulose macromolecules and methoxyl groups of urea resin with the formation of esters (hydrogen atoms of hydroxyl groups OH are substituted with hydrocarbon radicals R). The formation of a bond between the adhesive and the wood surface is the result of molecular interaction forces at the liquid adhesive – wood interface, when the distance between molecules of the same polarity (adhesive and wood) is less than 0.5 nm. Then, adsorption equilibrium sets in.
For citation: Rusakov D.S., Varankina G.S., Chubinsky A.N. Theoretical and Experimental Substantiation of the Nature of Interaction between Modified Binders and Wood. Lesnoy Zhurnal = Russian Forestry Journal, 2022, no. 6, pp. 153–163. (In Russ.). https://doi.org/10.37482/0536-1036-2022-6-153-163
Downloads
References
Варанкина Г.С., Русаков Д.С. Модификация фенолоформальдегидной смолы побочными продуктами сульфатно-целлюлозного производства // Изв. СПбЛТА. 2013. Вып. 204. С. 130–137. Varankina G.S., Rusakov D.S. Modification of Phenol Resin by the By-Products of Sulphate Pulp Production. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii = News of the Saint Petersburg State Forest Technical Academy, 2013, iss. 204, pp. 130–137. (In Russ.).
Варфоломеев А.А. Фенолоформальдегидные смолы, модифицированные лигнином // Перспективы развития технологии, экологии и автоматизации химических, пищевых и металлургических производств: материалы науч.-практ. конф. Иркутск: ИрГТУ, 2007. С. 48–51. Varfolomeev A.A. Phenol Formaldehyde Resins Modified with Lignin. Prospects for the Development of Technology, Ecology and Automation of Chemical, Food and Metallurgical Industries: Proceedings of the Scientific and Practical Conference. Irkutsk, ISTU Publ., 2007, pp. 48–51. (In Russ.).
Варфоломеев А.А., Синегибская А.Д., Гоготов А.Ф. Модифицированные лигнинфенолоформальдегидные смолы // Новые достижения в химии и химической технологии растительного сырья: материалы III Всерос. конф.: в 3 кн. Барнаул: АлтГУ, 2007. Кн. 3. С. 128–132. Varfolomeev A.A., Sinegibskaya A.D., Gogotov A.F. Modified Lignin Phenol Formaldehyde Resins. New Achievements in Chemistry and Chemical Technology of Plant Raw Materials: Proceedings of the 3rd All-Russian Conference: In 3 Books. Barnaul, ASU Publ., 2007, book 3, pp. 128–132. (In Russ.).
Кондратьев В.П. Новые виды экологически чистых синтетических смол для деревообработки // Деревообраб. пром-сть. 2002. № 4. С. 10−12. Kondratiev V.P. New Types of Environmentally Friendly Synthetic Resins for Woodworking. Derevoobrabativaushaya promishlennost’ = Woodworking industry, 2002, no. 4, pp. 10–12. (In Russ.).
Кондратьев В.П., Кондращенко В.И. Синтетические клеи для древесных материалов. М.: Науч. мир, 2004. 520 с. Kondratiev V.P., Kondrashchenko V.I. Synthetic Adhesives for Wood Materials. Moscow, Nauchnyy mir Publ., 2004. 520 p. (In Russ.).
Кондратьев В.П., Чубов А.Б., Соколова Е.Г. Новые виды эффективных клеев для производства водостойкой экологически чистой фанеры // Изв. СПбЛТА. 2010. Вып. 191. С. 169–179. Kondratiev V.P., Chubov A.B., Sokolova E.G. New Effective Adhesives For Manufacturing Of Water-Resistant And Ecologically Pure Plywood. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii = News of the Saint Petersburg State Forest Technical Academy, 2010, iss. 191, pp. 169–179. (In Russ.).
Кондратьев В.П., Чубов А.Б., Соколова Е.Г. Совершенствование эксплуатационных свойств и технологии фанеры повышенной водостойкости // Изв. СПбЛТА. 2011. Вып. 194. С. 114–120. Kondratiev V.P., Chubov A.B., Sokolova E.G. The Improvement of Application Properties and Technology of Increased Water Resistance Plywood. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii = News of the Saint Petersburg State Forest Technical Academy, 2011, iss. 194, pp. 114–120. (In Russ.).
Русаков Д.С., Варанкина Г.С., Чубинский А.Н. Модификация феноло- и карбамидоформальдегидных смол побочными продуктами производства целлюлозы // Клеи. Герметики.Технологии. 2017. № 8. С. 16–21. Rusakov D.S., Varankina G.S., Chubinskiy A.N. Modification of Phenol- and Urea-Formaldehyde Resins by Additive Products of Cellulose Manufacture. Klei. Germetiki. Tekhnologii = Adhesives. Sealants. Technologies, 2017, no. 8, pp. 16–21. (In Russ.).
Русаков Д.С., Bаранкина Г.С., Чубинский А.Н., Степанищева М.В. Влияние строения и структуры древесины различных пород на расход клея при производстве фанеры // Системы. Методы. Технологии. 2019. № 4(44). С. 112–117. Rusakov D.S., Varankina G.S., Chubinsky A.N., Stepanishcheva M.V. The Influence of the Structure and Texture of Wood of Various Species on the Consumption of Glue in the Production of Plywood. Systems. Methods. Technologies, 2019, no. 4(44), pp. 112–117. (In Russ.). https://doi.org/10.18324/2077-5415-2019-4-112-117
Русаков Д.С., Чубинский А.Н., Варанкина Г.С. Совершенствование технологии склеивания древесных материалов модифицированными клеями. СПб.: СПбГЛТУ, 2019. 127 с. Rusakov D.S., Chubinsky A.N., Varankina G.S. Improving the Technology of Gluing Wood Materials with Modified Adhesives. Saint Petersburg, SPbFTU Publ., 2019. 127 p. (In Russ.).
Русаков Д.С., Чубинский А.Н., Русакова Л.Н., Варанкина Г.С. Исследование свойств модифицированных фенолоформальдегидных клеев // Изв. СПбЛТА. 2018. Вып. 222. С. 155–174. Rusakov D.S., Chubinsky A.N., Rusakova L.N., Varankina G.S. Investigation of the Properties of Modified Phenol-Formaldehyde Adhesives. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii = News of the Saint Petersburg State Forest Technical Academy, 2018, iss. 222, pp. 155–174. (In Russ.). https://doi.org/10.21266/2079-4304.2018.222.155-174
Ravikovitch P.I., Neimark A.V. Calculations of Pore Size Distributions in Nanoporous Materials from Adsorption and Desorption Isotherms. Studies in Surface Science and Catalysis, 2000, vol. 129, pp. 597–606. https://doi.org/10.1016/S0167-2991(00)80262-1
Rouquerol J., Avnir D., Fairbridge C.W., Everett D.H., Haynes J.M., Pernicone N., Ramsay J.D.F., Sing K.S.W., Unger K.K. Recommendations for the Characterization of Porous Solids (Technical Report). Pure and Applied Chemistry, 1994, vol. 66, no. 8, pp. 1739–1758. https://doi.org/10.1351/pac199466081739
Rouquerol J., Llewellyn P., Rouquerol F. Is the BET Equation Applicable to Microporous Adsorbents? Studies in Surface Science and Catalysis, 2007, vol. 160, pp. 49–56. https://doi.org/10.1016/S0167-2991(07)80008-5
Selbo M.L. Adhesive Bonding of Wood. Technical Bulletin No. 1512. Washington, D.C., USDA, 1975. 124 p.
Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., Siemieniewska T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure and Applied Chemistry, 1985, vol. 57, no. 4, pp. 603–619. https://doi.org/10.1351/pac198557040603
Stoeckli H.F., Kraehenbuehl F. The External Surface of Microporous Carbons, Derived from Adsorption and Immersion Studies. Carbon, 1984, vol. 22, iss. 3, pp. 297–299. https://doi.org/10.1016/0008-6223(84)90174-X
Ugolev B.N. Wood as a Natural Smart Material. Wood Science and Technology, 2014, vol. 48, iss. 3, pp. 553–568. https://doi.org/10.1007/s00226-013-0611-2
Ustinov E.A., Fenelonov V.B., Yakovlev V.A., Eletskii P.I. Characterization of the Porous Structure of Carbon Materials by Means of Density Functional Theory. Kinetics and Catalysis, 2007, vol. 48, iss. 4, pp. 589–598. https://doi.org/10.1134/S0023158407040180
Walton K.S., Snurr R.Q. Applicability of the BET Method for Determining Surface Areas of Microporous Metal−Organic Frameworks. Journal of the American Chemical Society, 2007, vol. 129, iss. 27, pp. 8552–8556. https://doi.org/10.1021/ja071174k