Dimensional Determination of a Two-Storied Package Rafting Unit Placed on a Solid Basement
DOI:
https://doi.org/10.37482/0536-1036-2019-5-135Keywords:
timber rafting, timber, package, rafting unit, dimensions of hauling units, strapping, elastic, solution algorithm, physical modelAbstract
Two-storied package rafting units (TPRU) are essential for implementation of the concept of environmentally friendly forest transport operation of medium and small rivers’ system, which provides commercial accessibility of wood raw materials from the remote forest areas of Russia, and sustainable use of resources. The use of TPRU implies the need of engineering calculations, for instance, to substantiate their dimensions in case of the units formation on a solid basement (at log storage area). Selection of dimensions should be sufficient for the correct assessment of their structural behavior. An additional study, the purpose of which is to obtain dependences for determination of dimensions of TPRU, was proposed to conduct as a result of the literature data analysis. The research method is theoretical. The packages were considered as weightless flexible shells filled up with one type of loose medium. We have validated the capability of use the second order parametric equations of elastics with no inflexion point for describing cross-section of packages. A system of equations that connect the desired dimensions is derived. The analytical solution of the obtained system turned out to be impracticable. A computer algorithm for solving the numerical method was developed and implemented. The calculations were performed by operating with specific characteristics corresponding to the unit area of a separate package. The dependences of
specific dimensions of TPRU placed on a solid basement on the shape factor of a separately lying package were obtained by approximating the calculation results. Transition to the absolute values of height, width, and length of the rafting units and the working section length of the external strapping is provided by multiplying the specific characteristics by the square root of the package cross-sectional area. An approximating equitation is also obtained for calculating the absolute value of the working part length of the external strapping by the shape factor and the height of a separately lying package. The approximating dependencies,
which allow to determine by the shape factor of a detached package the position of the zero pressure surfaces of a loose medium for lower and upper packages, as well as correlation between the heights of the mentioned packages, were proposed to resolve the issues related to the strength characteristics of a rafting unit under the considered conditions. The determination coefficients of the suggested approximating dependencies have values not less than 0.99. The theoretic data reliability is confirmed by the experimental technique applying the physical models.
For citation: Posypanov S.V. Dimensional Determination of a Two-Storied Package Rafting Unit Placed on a Solid Basement. Lesnoy Zhurnal [Forestry Journal], 2019, no. 5, pp.135–147. DOI: 10.17238/issn0536-1036.2019.5.135
Downloads
References
Вахрушев М.М. Расчет пакета лесоматериалов в гибкой обвязке, лежащего на плоскости // Лесн. журн. 1965. № 5. С. 50–59. (Изв. высш. учеб. заведений). [Vakhrushev M.M. Calculation of a Bundle of Logs in Elastic Strapping Lying on a Flat Surface. Lesnoy Zhurnal [Forestry Journal], 1965, no. 5, pp. 50–59].
Воробьев А.Г. О расчете по эластиковой теории пучков пучковых плотов для случая нахождения их на суше // Лесн. журн. 1958. № 4. С. 93–98. (Изв. высш. учеб. заведений). [Vorob’yev A.G. On the Calculation of Bundle Rafts’ Bundles Placed Ashore According to the Elasticity Theory. Lesnoy Zhurnal [Forestry Journal], 1958, no. 4. pp. 93–98].
Журавский А.М. Справочник по эллиптическим функциям. М.; Л.: Изд-во АН СССР, 1941. 235 с. [Zhuravskiy A.M. Handbook on Elliptic Functions. Moscow, AN SSSR Publ., 1941. 235 p.]
Меркин Д.Р. К вопросу об определении натяжения в обвязке и формы пучка // Тр. ЛТА им. С.М. Кирова. 1961. № 96. С. 67–70. [Merkin D.R. To the Issue of Determining the Tension in a Bundle and the Bundle Form. Trudy LTA imeni S.M. Kirova. 1961, no. 96, pp. 67–70].
Посыпанов С.В. Исследование геометрических характеристик плавающей двухъярусной пакетной сплоточной единицы // Изв. СПбЛТА. 2016. Вып. 215. С. 176–191. [Posypanov S.V. Investgation of the Geometric Characteristics of a Floating Two-Storied Bundle Rafting Unit. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii [News of the Saint Petersburg State Forest Technical Academy], 2016, no. 215, pp. 176–191].
Посыпанов С.В. Определение геометрических параметров плавающего транспортного пакета круглых лесоматериалов численным методом // Лесн. журн. 2017. № 1. С. 141–153. (Изв. высш. учеб. заведений). [Posypanov S.V. Numerical Determination of the Geometric Parameters of a Transport Floating Roundwood Bundle. Lesnoy Zhurnal [Forestry Journal], 2017, no. 1, pp. 141–153]. DOI: 10.17238/issn0536-1036.2017.1.141; URL: http://lesnoizhurnal.ru/upload/iblock/817/posypanov.pdf
Реутов Ю.М. Расчеты пучков (пакетов) круглых лесоматериалов. М.: Лесн. пром-сть, 1975. 152 с. [Reutov Yu.M. Roundwood Bundles Calculations. Moscow, Lesnaya Promyshlennost’ Publ., 1975. 152 p.].
Харитонов В.Я., Посыпанов С.В. Опыт внедрения единого транспортного пакета вместо молевого лесосплава // Лесн. журн. 2007. № 1. С. 45–52. (Изв. высш. учеб. заведений). [Kharitonov V.Ya., Posypanov S.V. Experience of Introducing Transport Package instead of Drift Floating. Lesnoy Zhurnal [Forestry Journal], 2007, no. 1, pp. 45–52]. URL: http://lesnoizhurnal.ru/upload/iblock/3c6/3c66c8d06d36d7b633ef4eb67892e4d6.pdf
Byrd P.F., Friedman M.D. Handbook of Elliptic Integrals for Engineers and Scientist. Berlin, Springer, 1971. 360 p. DOI: 10.1007/978-3-642-65138-0
Craig R.F. Soil Mechanics. London, Spon Press, 1997. 485 р.
Gradshteyn I.S., Ryzhik I.M. Tables of Integrals, Series and Products. San Diego, CA, Academic Press, 2000. 1163 p.
Rankine W.J.M. A Manual of Applied Mechanics. London, Charles Griffin and Company, 1872. 648 p.
Tölke F. Parameterfunktionen. Praktische Funktionenlehre, Band 2: Theta-Funktionen und spezielle Weierstraßsche Funktionen. Berlin, Springer, 1966, pp. 83–115. DOI: 10.1007/978-3-642-51616-0
Whittaker E.T., Watson G.N. A Course in Modern Analysis. US, Book Jungle, 2009. 620 p.
Zwillinger D. Handbook of Differential Equations. Boston, Academic Press, 1997. 801 p.