Functional Composition and Structural Features of Higher Plant Lignins
DOI:
https://doi.org/10.37482/0536-1036-2023-5-164-183Keywords:
31P NMR, HSQC NMR, lignin, lignin structure, functional composition, bioprocessing, nuclear magnetic resonance methodAbstract
NMR spectroscopy is one of the effective methods for the study of plant raw materials, which makes it possible to identify differences in the structure and functional composition of lignins of various types of plant biomass. However, there are a number of limitations in the use of this method – in particular, the registration of NMR spectra at some nuclei (13C, 31P, etc.) usually requires considerable amount of time. This article proposes an approach to reduce the recording time of 31P NMR spectra by a factor of 17 without losing the quality of the result. With the help of this method and with the use of optimized experimental parameters, the functional group analysis of lignins of some softwood and hardwood species and herbaceous plants distributed in the European North of the Russian Federation was carried out. The types of structural units and their characteristic interstructural relationships per 100 phenylpropane units were determined by HSQC NMR. Differences in the functional composition and features of the structural organization of lignins were identified depending on the family to which the plant belongs. On the basis of the obtained array of experimental data the strategies of processing of specific types of plant raw materials were proposed. For example, lignins of the Birch and Beech families showed the largest number of β-aryl ether fragments with a free hydroxyl group in the α-position, which indicates the greater reactivity of these lignins. Accordingly, representatives of these families are priority raw materials in the development of lignin processing methods. At the same time, the structure of lignins of representatives of the Beech family proved to be the most resistant to hydrolytic degradation, which is important for lignin-directed bioprocessing concepts.
Acknowledgments: This study was funded by the Russian Science Foundation (Grant project no. 22-13-20015). The work of Yuliya A. Sypalova was supported by the RFBR Grant for Postgraduate Students (Project no. 20-33-90126). The equipment of the Core Facility Center “Arktika” of the Northern (Arctic) Federal University named after M.V. Lomonosov was used.
For citation: Sypalova Yu.A., Shestakov S.L., Kozhevnikov A.Yu. Functional Composition and Structural Features of Higher Plant Lignins. Lesnoy Zhurnal = Russian Forestry Journal, 2023, no. 5, pp. 164–183. (In Russ.). https://doi.org/10.37482/0536-1036-2023-5-164-183
Downloads
References
Боголицын К.Г., Лунин В.В., Косяков Д.С., Карманова А.П., Скребец Т.Э., Попова Н.Р., Малков А.В., Горбова Н.С., Пряхин А.Н., Шкаев А.Н., Иванченко Н.Л. Физическая химия лигнина / под ред. К.Г. Боголицына и В.В. Лунина. М.: Академкнига, 2010. 489 c. Bogolitsyn K.G. Physical Chemistry of Lignin. Moscow, Akademkniga Publ., 2010. 489 p. (In Russ.)
Плантариум: Растения и лишайники России и сопредельных стран: открытый онлайн атлас и определитель растений, 2007–2022. Режим доступа: http://www.plantarium.ru (дата обращения: 03.08.22). Plantarium. Plants and Lichens of Russia and Neighboring Countries: Open Online Galleries and Plant Identification Guide. 2007–2022.
Попова Ю.А., Шестаков С.Л., Кожевников А.Ю., Косяков Д.С., Сыпалов С.А. Сравнительный анализ лигнинов различных растительных форм с применением спектроскопии 31Р-ЯМР // Химия растит. сырья. 2019. № 4. С. 57–64. Popova Yu.A., Shestakov S.L., Kozhevnikov A.Yu., Kosyakov D.S., Sypalov S.A. Comparative Analysis of Lignins of Various Plant Forms by 31P-NMR. Khimija Rastitel’nogo Syr’ja = Chemistry of plant raw material, 2019, no. 4, pp. 57–64. (In Russ.). https://doi.org/10.14258/jcprm.2019045119
Шестаков С.Л., Косяков Д.С., Кожевников А.Ю., Ульяновский Н.В., Попова Ю.А. Совершенствование методики определения гидроксильных групп лигнина методом ЯМР-спектроскопии // Химия растит. сырья. 2017. № 2. С. 81–88. Shestakov S.L., Kosyakov D.S., Kozhevnikov A.Yu., Ulyanovskiy N.V., Popova Yu.A. The Elaboration of NMR Analysis of Different Types of Hydroxyl groups in the Lignin Samples. Khimija Rastitel’nogo Syr’ja = Chemistry of plant raw material, 2017, no. 2, pp. 81–88. (In Russ.). https://doi.org/10.14258/jcprm.2017021641
Argyropoulos D.S. Quantitative Phosphorus-31 NMR Analysis of Lignins, a New Tool for the Lignin Chemist. Journal of Wood Chemistry and Technology, 1994, vol. 14, iss. 1, pp. 45–63.
Balakshin M.Yu., Capanema E.A. On the Quantification of Lignin Hydroxyl Groups with 31P and 13C NMR Spectroscopy. Journal of Wood Chemistry and Technology, 2015, vol. 35, iss. 3, pp. 220–237. https://doi.org/10.1080/02773813.2014.928328
Balakshin M.Y., Capanema E.A., Santos R.B., Chang H.M., Jameel H. Structural Analysis of Hardwood Native Lignins by Quantitative 13C NMR Spectroscopy. Holzforschung, 2015, vol. 70, iss. 2, pp. 95–108. https://doi.org/10.1515/hf-2014-0328
Boerjan W., Ralph J., Baucher M. Lignin Biosynthesis. Annual Review of Plant Biology, 2003, vol. 54, iss. 1, pp. 519–546. https://doi.org/10.1146/annurev.arplant.54.031902.134938
Chakar F.S., Ragauskas A.J. Review of Current and Future Softwood Kraft Lignin Process Chemistry. Industrial Crops and Products, 2004, vol. 20, iss. 2, pp. 131–141. https://doi.org/10.1016/j.indcrop.2004.04.016
Duval A., Vidal D., Sarbu A., Rene W., Averous L. Scalable Single-step Synthesis of Lignin-based Liquid Polyols with Ethylene Carbonate for Polyurethane Foams. Materials Today Chemistry, 2022, vol. 24, art. no. 100793. https://doi.org/10.1016/j.mtchem.2022.100793
El Mansouri N.E., Salvado J. Analytical Methods for Determining Functional Groups in Various Technical Lignins. Industrial Crops and Products, 2007, vol. 26, iss. 2, pp. 116–124. https://doi.org/10.1016/j.indcrop.2007.02.006
FAOSTAT Database: Food and Agriculture Organization of the United Nations, 2016–2022. Available at: https://www.fao.org/faostat/en/#data/FO (accessed 03.08.22).
Fiţigău I.F., Peter F., Boeriu C.G. Structural Analysis of Lignins from Different Sources. International Journal of Chemical, Materials and Biomolecular Sciences, 2013, vol. 6, iss. 4, pp. 167–172. https://doi.org/10.5281/zenodo.1331679
Freudenberg K., Neish A.C. Constitution and Biosynthesis of Lignin. New York, Springer Verlag, 1968. 129 p.
Gabov K., Gosseling R.J., Smeds A.I., Fardim P. Characterization of Lignin Extracted from Birch Wood by a Modified Hydrotropic Process. Journal of Agricultural and Food Chemistry, 2014, vol. 62, iss. 44, pp. 10759–10767. https://doi.org/10.1021/jf5037728
Granata A., Argyropoulos D.S. 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a Reagent for the Accurate Determination of the Uncondensed and Condensed Phenolic Moieties in Lignins. Journal of Agricultural and Food Chemistry, 1995, vol. 43, iss. 6, pp. 1538–1544. https://doi.org/10.1021/jf00054a023
Heitner C., Dimmel D.R., Schmidt J.A. Lignin and Lignans: Advances in Chemistry. Florida, CRC Press, 2010. 683 p.
Jiang B., Zhang Yu, Guo T., Zhao H., Jin Y. Structural Characterization of Lignin and Lignin-carbohydrate Complex (LCC) from Ginkgo Shells (Ginkgo biloba L.) by Comprehensive NMR Spectroscopy. Polymers, 2018, vol. 10, iss. 7, pp. 736. https://doi.org/10.3390/polym10070736
Meng X., Crestini C., Ben H., Hao N., Pu Y., Ragauskas A.J., Argyropoulos D.S. Determination of Hydroxyl Groups in Biorefinery Resources via Quantitative 31P NMR Spectroscopy. Nature Protocols, 2019, vol. 14, iss. 9, pp. 2627–2647. https://doi.org/10.1038/s41596-019-0191-1
Paulsen Thoresen P., Lange H., Crestini C., Rova U., Matsakas L., Christakopoulos P. Characterization of Organosolv Birch Lignins: Toward Application-Specific Lignin Production. ACS Omega, 2021, vol. 6, iss. 6, pp. 4374–4385. https://doi.org/10.1021/acsomega.0c05719
Pepper J.M., Baylis P.E.T., Adler E. The Isolation and Properties of Lignins Obtained by the Acidolysis of Spruce and Aspen Woods in Dioxane-water Medium. Canadian Journal of Chemistry, 1959, vol. 37, iss. 8, pp. 1241–1248. https://doi.org/10.1139/v59-183
Popova Y.A., Shestakov S.L., Belesov A.V., Pikovskoi I.I., Kozhevnikov A.Y. Comprehensive Analysis of the Chemical Structure of Lignin from Raspberry Stalks (Rubus idaeus L.). International Journal of Biological Macromolecules, 2020, vol. 164, pp. 3814–3822. https://doi.org/10.1016/j.ijbiomac.2020.08.240
Pu Y., Cao S., Ragauskas A.J. Application of Quantitative 31P NMR in Biomass Lignin and Biofuel Precursors Characterization. Energy & Environmental Science, 2011, vol. 4, iss. 9, pp. 3154–3166. https://doi.org/10.1039/C1EE01201K
Ralph J., Lundquist K., Brunow G., Lu F., Kim H., Schatz P.F., Boerjan W. Lignins: Natural Polymers from Oxidative Coupling of 4-hydroxyphenyl-propanoids. Phytochemistry Reviews, 2004, vol. 3, iss. 1, pp. 29–60. https://doi.org/10.1023/B:PHYT.0000047809.65444.a4
Vanholme R., Demedts B., Morreel K., Ralph J., Boerjan W. Lignin Biosynthesis and Structure. Plant physiology, 2010, vol. 153, iss. 3, pp. 895–905. https://doi.org/10.1104/pp.110.155119
Weng J.K., Chapple C. The Origin and Evolution of Lignin Biosynthesis. New Phytologist, 2010, vol. 187, iss. 2, pp. 273–285. https://doi.org/10.1111/j.1469-8137.2010.03327.x
Wyman C. Handbook on Bioethanol: Production and Utilization. Washington, Routledge, 1996. 444 p.
Xu G., Shi Z., Zhao Y., Deng J., Dong M., Liu C., Murugadoss V., Mai X., Guo Z. Structural Characterization of Lignin and its Carbohydrate Complexes Isolated from Bamboo (Dendrocalamus sinicus). International Journal of Biological Macromolecules, 2019, vol. 126, pp. 376–384. https://doi.org/10.1016/j.ijbiomac.2018.12.234
Yuan T.Q., Xu F., Sun R.C. Role of Lignin in a Biorefinery: Separation Characterization and Valorization. Journal of Chemical Technology & Biotechnology, 2013, vol. 88, iss. 3, pp. 346–352. https://doi.org/10.1002/jctb.3996