Cultivation of Dunaliella salina Microalgae in the Nutrient Medium from Neutral-Sulfite Alkalis
DOI:
https://doi.org/10.37482/0536-1036-2023-6-162-175Keywords:
neutral-sulfite liquor, halophiles, Dunaliella salina microalgae, physiological activity, kinetic characteristics of growth, biomass yield, proteinAbstract
The effectiveness of cultivation of microalgae Dunaliella salina in the nutrient medium from neutral-sulfite alkalis obtained during the production of cellulose from birch wood, with additional sodium chloride addition was established. D. salina microalgae were isolated from the bottom sediment of the Koyash Lake of the Kerch Peninsula. It was shown that the physiological activity of microalgae was affected by the amount of sodium chloride introduced into the nutrient medium. When up to 5 % sodium chloride is added to the nutrient medium. D. salina microalgae exhibit halotolerant properties when up to 5 % of sodium chloride is added to the nutrient medium. With an increase in the amount of sodium chloride introduced up to 30 %, D. salina culture exhibits halophilic properties. The best kinetic characteristics of the growth of D. salina when cultivated in the nutrient medium from neutral sulfite alkalis were observed at halophilic physiological activity. The yield of biomass of D. salina microalgae when cultivated in the nutrient medium without and when 5 % sodium chloride was added to the nutrient medium from neutral-sulfite alkalis is higher compared to the addition of 15 and 30 % sodium chloride to the nutrient medium. However, the accumulation of protein has an opposite dependence, in particular, the protein content of the culture fluid, in which 15 and 30 % sodium chloride was applied is higher than that when 5 % sodium chloride was applied. With an increase in the duration of cultivation up to 240 hours, a decrease in the pH of the nutrient medium from 7.04 to 4.70 was observed, this was due to the assimilation by microalgae of mineral and organic-bound nitrogen present in the nutrient medium from neutral-sulfite alkalis. It was established that during cultivation microalgae assimilate both reducing substances and coloring substances present in the nutrient medium, which results in intensive cell growth. With an increase in the duration of cultivation of microalgae, an increase in the number of cells in the culture fluid to 4 ⋅ 106 cl/ml was observed, which at the same time synthesize the extracellular enzyme xylanase, which contributes to the additional formation of reducing substances in the nutrient medium due to the enzymatic hydrolysis of xylan. The obtained research results show the prospects of using neutral-sulfite alkalis in biotechnology in the cultivation of D. salina microalgae for the production of biological products.
For citation: Iksanov R.A., Kanarsky A.V., Kanarskaya Z.A., Gеmatdinova V.M. Cultivation of Dunaliella salina Microalgae in the Nutrient Medium from Neutral-Sulfite Alkalis. Lesnoy Zhurnal = Russian Forestry Journal, 2023, no. 6, pp. 162–175. (In Russ.). https://doi.org/10.37482/0536-1036-2023-6-162-175
Downloads
References
Бадикова А.Д., Куляшова И.Н., Кудашева Ф.Х. Лигносульфонаты нейтрально-сульфитного способа варки как перспективное сырье для получения буровых реагентов // Башк. хим. журн. 2014. Т. 21, № 1. С. 64–66. Badikova A.D., Kulyashova I.N., Kudasheva F.H. Lignosulfonates of the NeutralSulfite Cooking Method as a Promising Raw Material for the Production of Drilling Reagents. Bashkir Chemical Journal, 2014, vol. 21, no. 1, pp. 64–66. (In Russ.).
Кононов Г.Н., Веревкин А.Н., Сердюкова Ю.В., Миронов Д.А. Древесина как химическое сырье. История и современность. IV. Делигнификация древесины как путь получения целлюлозы. Часть I // Лесн. вестн. 2022. Т. 26, № 1. С. 97–113. Kononov G.N., Verevkin A.N., Serdyukova Yu.V., Mironov D.A. Wood as a Chemical Raw Material. History and Modernity. IV. Delignification of Wood as a Way to Obtain Cellulose. Part I. Forest Bulletin, 2022, vol. 26, no. 1, pp. 97–113. (In Russ.). https://doi.org/10.18698/2542-1468-2022-1-97-113
Смирнова Е.Г., Лоцманова Е.М., Журавлева Н.М., Резник А.С., Вураско А.В., Дрикер Б.Н., Минакова А.Р., Симонова Е.И., Сиваков В.П., Первова И.Г., Маслакова Т.И., Казаков Я.В., Севастьянова Ю.В., Коптяев В.В., Дернова Е.В., Канарский А.В., Дулькин Д.А., Щербак Н.В., Дубовый В.К. Материалы из нетрадиционных видов волокон: технологии получения, свойства, перспективы применения: моногр. / под ред. А.В. Вураско. Екатеринбург: УГЛТУ, 2020. 252 c. Smirnova E.G., Lotsmanova E.M., Zhuravleva N.M., Reznik A.S., Vurasko A.V., Driker B.N., Minakova A.R., Simonova E.I., Sivakov V.P., Pervova I.G., Maslakova T.I., Kazakov Ya.V., Sevastyanova Yu.V., Koptyaev V.V., Dernova E.V., Kanarsky A.V., Dulkin D.A., Sherbak N.V., Dubovy V.K. Materials from Non-Traditional Types of Fibers: Technologies of Production, Properties, Prospects of Application: Monograph. Yekaterinburg, Ural State Forestry University, 2020. 252 p. (In Russ.).
Чакчир Б.А., Алексеева Г.М. Фотометрические методы анализа: метод. указ. СПб.: СПХФА, 2002. 44 с. Chakchir B.A., Alekseeva G.M. Photometric Methods of Analysis: Methodological Guidelines. Saint Petersburg, SPCPU Publ., 2002. 44 p. (In Russ.).
Beardall J., Giordano M. Acquisition and Metabolism of Inorganic Nutrients by Dunaliella. The Alga Dunaliella: Biodiversity, Physiology, Genomics and Biotechnology. New Hampshire, Science Publ., 2019, pp. 73–187. https://doi.org/10.1201/b10300-8
Benemann J.R. Opportunities and Challenges in Algae Biofuels Production. A Position Paper in line with Algae World 2008, 2008. 15 p.
Brennan L., Owende P. Biofuels from Microalgae – a Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-products. Renewable and Sustainable Energy Reviews, 2010, vol. 14, iss. 2, pp. 557–577. https://doi.org/10.1016/j.rser.2009.10.009
Engstrand P., Sundberg C., Wancke-StahlC., Jonsson J., Starck G., Wahlgren M.Method of Producing Bleached Thermomechanical Pulp (Tmp) or Bleached Chemithermomechanical Pulp (Ctmp), Patent US, no. US 2004/0231811 A1.
Fan J., Huang J., Li Y., Han F., Wang J., Li X., Wang W. Sequential Heterotrophy Dilution Photoinduction Cultivation for Efficient Microalgal Biomass and Lipid Production. Bioresource Technology, 2012, vol. 112, pp. 206–211. https://doi.org/10.1016/j.biortech.2012.02.046
Ferraz A., Guerra A., Souza-Cruz P.B., Mendonca R. Attempts to Correlate Biopulping Benefits with Changes in the Chemical Structure of Wood Components and Enzymes Produced during the Wood Biotreatment with Ceriporiopsis subvermispora. Progress in Biotechnology, 2002, vol. 21, pp. 73–80. https://doi.org/10.1016/S0921-0423(02)80009-0
Huang C., Wu H., Li R., Zong M. Improving Lipid Production from Bagasse Hydrolysate with Trichosporon Fermentans by Response Surface Methodology. New Biotechnology, 2012, vol. 29, iss. 3, pp. 372–378. https://doi.org/10.1016/j.nbt.2011.03.008
Kielkopf C.L., Bauer W.J., Urbatsch I.L. Methods for Measuring the Concentrations of Proteins. Cold Spring Harbor Protocols, 2020, vol. 4, art. 102277. https://doi.org/10.1101/pdb.top102277
Kitto M.R., Rengunathan C. Is Earthen Unmixed Pond Culture Technology for Dunaliella, the only Way to Beat High Natural β-Carotene Prices? Engormix, 2012.
Konwar L.J., Mikkola J.P., Bordoloi N., Saikia R., Chutia R.S., Kataki R. Sidestreams from Bioenergy and Biorefinery Complexes as a Resource for Circular Bioeconomy. Waste Biorefinery, 2018, pp. 85–125. https://doi.org/10.1016/B978-0-444-63992-9.00003-3
Madhuri P., Keerthana R. Effect of Pulping, Bleaching and Refining Process on Fibers for Papermaking. International Journal of Engineering Research & Technology, 2020, vol. 9, iss. 12, pp. 330–316.
Maier R.M. Bacterial Growth. Environmental Microbiology. Burlington, San Diego, London, Elsevier Publ., 2009, pp. 37–54. https://doi.org/10.1016/B978-0-12-370519-8.00003-1
Mboowa D.A. Review of the Traditional Pulping Methods and the Recent Improvements in the Pulping Processes. Biomass Conversion and Biorefinery, 2021, vol. 1, pp. 1–12. https://doi.org/10.1007/s13399-020-01243-6