The Use of Thermally Damaged Wood in Laminated Wood Beam Structures

Authors

DOI:

https://doi.org/10.37482/0536-1036-2024-1-168-181

Keywords:

pine wood, thermally damaged pine wood, modeling, laminated wood beam structure, wood composite beam, strength, resource saving, forest fire

Abstract

This paper deals with the experimental research results of laminated wood beam structures made using lamellas produced from the pine trees, partially damaged in forest plantations. The purpose of the research has been to study the stress-strain state of laminated wood beam structures utilizing the wood damaged by the thermal exposure caused by a forest fire. Previously, the authors have carried out a significant amount of research into the physical, mechanical and strength properties of thermally damaged pine wood. They have established the dependence of the strength properties of the wood on the degree of fire damage and the wood sampling points according to the height of the stem. Prior to the experiment on the large-scale models in the “Lira 10.12” software complex, numerical studies of four series of single beams with a span of 6.0 m and a section of 140×500 mm produced from the 1st grade pine wood in the upper and lower parts of the section and from thermally damaged pine wood in the middle part of the section. A comparative analysis of the beams has been performed with varying percentages of replacement of the healthy pine wood with the one weakened by the fire along the height of the section: 76, 62, 51 and 36 %. As a result of the numerical calculation of the beams under study using the derived safety factor equaling 1.136, their actual load-bearing capacity has been determined. It has been established that a decrease in the load-bearing capacity of the СB-2 beams equals 12.2 kN, which is 16.05 % relative to the reference beam CB-5, made entirely of the 1st grade pine wood. For the CB-4 beams a decrease in the load-bearing capacity equals 7.4 kN, which is 9.74 % relative to the reference beam CB-5. The difference between the calculated and experimental breaking loads is 9.5 to 14.3 %. The introduction of the safety factor equaling 1.136 in the numerical calculation ensures sufficient convergence of the calculated and experimental data (the measurement error is 3 %). The load-bearing capacity of the reference beam СB-5, made entirely of the 1st grade pine wood, is 12.38 kN/m. For beams CB-1 to CB-4 it equals from 8.53 to 12.06 kN/m. The relative decrease in the load-bearing capacity did not exceed 31.1 to 32.5 %. It has been established that the CB-4 beam, made using 34 % of lamellas produced from thermally damaged pine wood, allows for the load-bearing capacity of 97.5 % relative to the beams made entirely of the 1st grade pine wood.

Downloads

Download data is not yet available.

Author Biographies

Vladislav A. Martynov, Vladimir State University named after A.G. and N.G. Stoletovs

Postgraduate Student

Mikhail S. Lisyatnikov, Vladimir State University named after A.G. and N.G. Stoletovs

Candidate of Engineering, Assoc. Prof.; ResearcherID: V-6057-2018

Anastasiya V. Lukina, Vladimir State University named after A.G. and N.G. Stoletovs

Candidate of Engineering, Assoc. Prof.; ResearcherID: O-1352-2016

Svetlana I. Roshchina, Vladimir State University named after A.G. and N.G. Stoletovs

Doctor of Engineering, Prof.; ResearcherID: A-7722-2019

References

Баланцева Н.Б., Мелехов В.И., Калиничева О.А. Совершенствование метода расчета процесса конвективной сушки пиломатериалов // Изв. вузов. Лесн. журн. 2018. № 4. С. 132–139. Balantseva N.B., Melekhov V.I., Kalinicheva O.A. Improvement of the Method for Calculating the Process of Convective Drying of Sawn Timber. Lesnoy Zhurnal = Russian Forestry Journal, 2018, no. 4, pp. 132–139. (In Russ.). https://doi.org/10.17238/issn0536-1036.2018.4.132

Губенко Л.А., Хандов М.Г. Возможность применения низкосортной древесины в клееных деревянных конструкциях // Строительная наука – XXI век: теория, образование, практика, инновации Северо-Арктическому региону: сб. тр. VII Междунар. науч.-практ. конф., посвящ. 100-летию со дня рождения ученых СПбГАСУ (ЛИСИ) В.А. Лебедева, В.А. Трулля, Е.И. Светозаровой, Архангельск, 28–30 июня 2016 г. / САФУ им. М.В. Ломоносова, СПбГАСУ, Ассоц. выпускников АГТУ, РААСН, М-во стрва Архангельской обл., Союз проф. строителей, Союз проектировщиков, Ассоц. инж. изыскания в стр-ве; отв. ред. Б.В. Лабудин. Архангельск: Агентство рекламы РАД, 2016. С. 64–68. Gubenko L.A., Khandov M.G. The Possibility of Using Low-Grade Wood in Glued Wooden Structures. Proc. of the VII Int. Sci-Tech Conf. dedicated to the 100th anniversary of the birth of SPbGASU (LISI) scientists V.A. Lebedev, V.A. Trull, E.I. Svetozarova “Construction Science – XXI century: Theory, Education, Practice, Innovations for the North Arctic Region”, June 28–30, 2016. Arkhangelsk, RAD Advertising Agency LLC, 2016, pp. 64–68. (In Russ.)

Лабудин Б.В., Морозов В.С., Попов О.Н., Никитина Т.А., Орлов А.О. Сопротивление клееной древесины растяжению под различными углами к направлению волокон // Строит. механика и расчет сооружений. 2019. № 3(284). С. 12–17. Labudin B.V., Morozov V.S., Popov O.N., Nikitina T.A., Orlov A.O. The Resistance of Laminated Wood to Tension at Different Angles of the Orientation of the Fibers. Stroitel’naya Mekhanika i Raschet Sooruzheniy = Structural Mechanics and Analysis of Constructions, 2019, no. 3(284), pp. 12–17. (In Russ.).

Лукина А.В., Лисятников М.С., Мартынов В.А., Рощина С.И. Прочность и деформативность сырьевой древесины после огневого воздействия // Строительство и реконструкция. 2022. № 6(104). С. 40–49. Lukina A.V., Lisyatnikov M.S., Martinov V.A., Roschina S.I. Strength and Deformability of Raw Wood after Fire Exposure. Construction and Reconstruction, 2022, no. 6(104), pp. 40–49. (In Russ.) https://doi.org/10.33979/2073-7416-2022-104-6-40-49

Найчук А.Я., Погорельцев А.А., Серов Е.Н. Теория и практика дальнейшего развития деревянных конструкций. Ч. 1. Нагрузки, расчетные сопротивления и длительная прочность древесины // Промышл. и гражд. строительство. 2018. № 6. С. 38–44. Naichuk A.Ya., Pogorel’tsev A.A., Serov Ye.N. Theory and Practice of Further Development of Wooden Structures. Part 1: Loads, Design Resistance and Long-Term Strength of Timber. Promyshlennoe i grazhdanskoe stroitel’stvo = Industrial and Civil Engineering, 2018, no. 6, pp. 38–44. (In Russ.).

Никитина А.В., Исакова В.В., Ашихмина А.А. Древесина и клеи, применяемые при изготовлении клееных деревянных конструкций // Интеграция наук. 2018. № 8(23). С. 431–433. Nikitina A.V., Isakova V.V., Ashikhmina A.A. Wood and Adhesives Used in the Manufacture of Laminated Wood Structures. Integratsiya Nauk = Integration of Sciences, 2018, no. 8(23), pp. 431–433. (In Russ.).

Патент № 2587215 C1 РФ, МПК E04B 1/10 (2006.01), E04B 2/70 (2006.01). Деревянный клееный строительный элемент, способ возведения стеновых конструкций из деревянных клееных строительных элементов: № 2015103127/03: заявл. 30.01.2015: опубл. 20.06.2016 / К.В. Иванов. Ivanov K.V. Wooden Glued Structural Element, Method of Erecting Wall Structures from Wooden Glued Structural Elements. Patent RF, no. RU 2587215 C1, 2016. (In Russ.).

Пирцхалава-Карпова Н.Р., Карпов А.А., Козловский Е.Е., Грищенко М.Ю. Защита еловых лесов от вспышек Ips typographus (обзор) // Изв. вузов. Лесн. журн. 2021. № 4. С. 55–67. Pirtskhalava-Karpova N.R., Karpov A.A., Kozlovski E.E., Grishchenko M.Yu. Protection of Spruce Forests from Outbreaks of Ips Typographus (Review). Lesnoy Zhurnal = Russian Forestry Journal, 2021, no. 4, pp. 55–67. (In Russ.). https://doi.org/10.37482/0536-1036-2021-4-55-67

Погорельцев А.А., Пятикрестовский К.П. Дальнейшее развитие и совершенствование норм проектирования конструкций из древесины // Промышл. и гражд. строительство. 2019. № 3. С. 35–41. Pogorel’tsev A.A., Pyatikrestovskiy K.P. Issues of Further Development and Improvement of Design Standards for Wood Structures. Promyshlennoe i grazhdanskoe stroitel’stvo = Industrial and Civil Engineering, 2019, no. 3, pp. 35–41. (In Russ.). https://doi.org/10.33622/0869-7019.2019.03.35-41

Пятикрестовский К.П., Травуш В.И., Погорельцев А.А., Клюкин А.А. Разработка конструкций из цельной древесины для объектов инфраструктуры // International Journal for Computational Civil and Sctructural Engineering. 2018. Т. 14, № 1. С. 145–154. Pyatikrestovskiy K.P., Travush V.I., Pogorel’tsev A.A., Klukin A.A. Development of Structures from Solid Wood for Objects of Infrastructure. International Journal for Computational Civil and Structural Engineering, 2018, vol. 14, no. 1, pp. 145–154. (In Russ.). https://doi.org/10.22337/2587-9618-2018-14-1-145-154

Тюрина О.Е. Повышение прочности и жесткости деревоклееных балочных элементов с армированием композитными стержнями: дис. … канд. техн. наук. Архангельск, 2022. 128 с. Tyurina O.E. Increasing the Strength and Rigidity of Wood-Laminated Beam Elements Reinforced with Composite Rods: Cand. Tech. Sci. Diss. Arkhangelsk, 2022. 128 p. (In Russ.).

Arefyev S.P. West Siberian Latitundial Xylomycological Scale and Its Use for Indicating Forest Conditions. Contemporary Problems of Ecology, 2018, vol. 11, iss. 5, pp. 527–541. https://doi.org/10.1134/S1995425518050037

Castillo M.E., Garfias R., Plaza Á. Effects of Fire on Forest Communities and Sclerophyllous Scrubs in Central Chile as a Basis for the Formulation of Restoration Guidelines. Forestist, 2021, vol. 71, iss. 1, pp. 9–17. https://doi.org/10.5152/forestist.2020.20042

Lisyatnikov M., Lukina A., Chibrikin D., Labudin B. The Strength of Wood-Reinforced Polymer Composites in Tension at an Angle to the Fibers. Proceedings of MPCPE 2021. Lecture Notes in Civil Engineering. Cham, Springer, 2022, vol. 182, pp. 523–533. https://doi.org/10.1007/978-3-030-85236-8_46

Lukin M., Prusov E., Roshchina S., Karelina M., Vatin N. Multi-Span Composite Timber Beams with Rational Steel Reinforcements. Buildings, 2021, vol. 11, iss. 46. https://doi.org/10.3390/buildings11020046

Lukina A., Lisyatnikov M., Lukin M., Vatin N., Roschina S. Strength Properties of Raw Wood after a Wildfire. Magazine of Civil Engineering, 2023, iss. 3(119), art. no. 11907. https://doi.org/10.34910/MCE.119.7

Lukina A., Lisyatnikov M., Martinov V., Chernykh A., Roschina S. Mechanical and Microstructural Changes in Post-Fire Raw Wood. Architecture and Engineering, 2022, vol. 7, iss. 3, pp. 44–52. https://doi.org/10.23968/2500-0055-2022-7-3-44-52

Scandelli H., Ahmadi-Senichault A., Richard F., Lachaud J. Simulation of Wood Combustion in PATO Using a Detailed Pyrolysis Model Coupled to fireFoam. Applied Sciences, 2021, vol. 11, iss. 22, art. no. 10570. https://doi.org/10.3390/app112210570

Suzuki J., Mizukami T., Naruse T., Araki Y. Fire Resistance of Timber Panel Structures Under Standard Fire Exposure. Fire Technology, 2016, vol. 52, pp. 1015–1034. https://doi.org/10.1007/s10694-016-0578-2

Veselkin D., Kuyantseva N., Pustovalova L., Mumber A. Trends in Forest Fire Occurrence in the Ilmensky Nature Reserve, Southern Urals, Russia, between 1948 and 2014. Forests, 2022, vol. 13, iss. 4, art. no. 528. https://doi.org/10.3390/f13040528

Yang Y., Hu X., Han M., He K., Liu B., Jin T., Cao X., Wang Y., Huang J. Post-Rire Temporal Trends in Soil Properties and Revegetation: Insights from Different Wildfire Severities in the Hengduan Mountains, Southwestern China. Catena, 2022, vol. 213, art. no. 106160. https://doi.org/10.1016/j.catena.2022.106160

Published

2024-03-03

How to Cite

Martynov В. ., Lisyatnikov М. ., Lukina А. ., and Roshchina С. . “The Use of Thermally Damaged Wood in Laminated Wood Beam Structures”. Lesnoy Zhurnal (Forestry Journal), no. 1, Mar. 2024, pp. 168-81, doi:10.37482/0536-1036-2024-1-168-181.

Issue

Section

MECHANICAL TECHNOLOGY OF WOOD AND WOOD SCIENCE

Most read articles by the same author(s)