Water Absorption of Thermally Modified Wood Filler of Thermal Wood-Cement Composition

Authors

DOI:

https://doi.org/10.37482/0536-1036-2024-2-201-215

Keywords:

thermally modified wood, TMW, thermally modified wood moisture content, soaking the thermally modified filler, thermal wood-cement composition, vibrocompression of a semi-dry thermal wood-cement composition, thermal wood concrete, TWC

Abstract

In this article, the technological aspects of obtaining a new effective composite material based on thermally modified wood filler and cement binders – thermal wood concrete – are considered. The influence of water content in thermally modified wood filler on the qualitative characteristics of a wood-cement composition has been studied. To solve the theoretical problems and applied issues of forecasting the technological parameters for the production of thermal wood-cement composition, the mathematical models of the effect of soaking duration and water temperature on the relative change in the mass (dampening) of the filler have been developed. At the initial stage, experimental studies have been carried out to determine the effect of pre-soaking the filler on the curing of thermal wood concrete and the quality of the resulting material. The samples have been produced via vibrocompression of a semi-dry mixture using dry and pre-soaked filler made of thermally modified wood, as well as via vibratory casting. The regularities of moisture transfer between the filler and the cement-sand mortar have been determined, and it has also been established that pre-soaking the thermally modified filler has a positive effect on the strength and quality characteristics of thermal wood concrete. On the contrary, the use of the dry filler made of thermally modified wood in this molding method has a significant negative impact on the quality of the finished material. The process of moisture absorption by the thermally modified wood filler by soaking has been studied separately. The main regularities and features of water sorption by the filler have been established at the time intervals of 30, 60, 120, 180 and 300 minutes and at the water temperatures of 3–4, 16–18 and 75–85 ℃. It has also been determined that additional water heating significantly accelerates the intensity of water sorption and the degree of dampening of thermally modified wood fillers, and the size of their particles does not play a significant role in the process. In this case, the recommended duration of soaking the thermally modified wood filler before preparing the mixture and molding the products made of thermal wood concrete via semi-dry vibrocompression is 30 minutes.

Downloads

Download data is not yet available.

Author Biographies

Vasiliy Yu. Chernov, Volga State University of Technology

Candidate of Engineering, Assoc. Prof.; ResearcherID: X-4439-2019

Il’shat G. Gaisin, Volga State University of Technology

Candidate of Engineering, Assoc. Prof.; ResearcherID: AAH-8298-2020

Anzhelika N. Nosova, Volga State University of Technology

Postgraduate Student; ResearcherID: JQW-3871-2023

Elena M. Maltseva, LLC “CMP “AMARANT”

Chief Executive Officer; ResearcherID: JQW-0124-2023

References

Горностаева Е.Ю., Ласман И.А., Федоренко Е.А., Камоза Е.В. Древесноцементные композиции с модифицированной структурой на макро, микро- и наноуровнях // Строит. материалы. 2015. № 11. С. 13−16. Gornostaeva E.Yu., Lasman I.A., Fedorenko E.A., Kamoza E.V. Wood-Сement Compositions with Structures Modified at Macro-, Micro-, and Nano-Levels. Stroitel’nye Materialy = Construction Materials, 2015, no. 11, pp. 13−16. (In Russ.).

Крутов П.И., Склизков Н.И., Наназашвили И.Х., Сироткина Р.Б. и др. Использование отходов древесины для получения эффективных строительных материалов: обзор. М.: ОНТИ ЦНИИЭПсельстроя, 1978. 24 с. Krutov P.I., Sklizkov N.I., Nanazashvili I.Kh., Sirotkina R.B. et al. The Use of Wood Waste to Produce Efficient Building Materials: Review. Moscow, Scientific and Technical Information Division of the Central Research Institute for Experimental Design of Rural Construction, 1978. 24 p. (In Russ.).

Мальцева Е.М. Разработка нормативно-технической основ на инновационный древесно-цементный композитный материал и на изделия из него: магистер. дис. (27.04.01). Йошкар-Ола, 2023. 120 с. Mal’tseva E.M. Development of Regulatory and Technical Framework for Innovative Wood-Cement Composite Material and Products Made of it: Master’s Thesis (27.04.01). Yoshkar-Ola, 2023. 120 p. (In Russ.).

Наназашвили И.Х. Быстровозводимые малоэтажные монолитные дома из арболита. Ч.1 // Строит. материалы, оборудование, технологии ХХI в. 2009. № 11. С. 14–15. Nanazashvili I.Kh. The “Quick-to-Erect” Low-Rise Monolith Buildings from the Arbolite: Part 1. Stroitel’nye materialy, oborudovanie, tekhnologii XXI veka = Construction Materials, Equipment, Technologies of the XXI century, 2009, no. 11, pp. 14–15. (In Russ.).

Наназашвили И.Х., Марданов М.К. Производство арболита из древесных отходов: обзор. информ. / М-во пром. стр-ва СССР. М.: ЦБНТИ Минпромстроя СССР, 1974. 47 с. Nanazashvili I.Kh., Mardanov M.K. Production of Wood Concrete from Wood Waste: Overview. Moscow, Ministry of Industrial Construction of the USSR, Central Office for Scientific and Technical Information, 1974. 47 p. (In Russ.).

Патент 2 790 390 C1 РФ, МПК C04B 18/26(2006.01), C04B 28/04(2006.01), C04B 40/00(2006.01), C04B 111/20(2006.01). Способ изготовления термодревбетона: № 2021139396: заявл. 27.12.2021: опубл. 17.02.2023 / В.Ю. Чернов, Ю.В. Чернов, А.С. Разинов, И.Г. Гайсин, Е.С. Шарапов, Е.М. Мальцева. Chernov V.Yu., Chernov Yu.V., Razinov A.S., Gajsin I.G., Sharapov E.S., Mal’tseva E.M. Method for Producing Thermo-Wood-Concrete. Patent RF no. RU 2 790 390 C1, 2023. (In Russ.).

Патент 2804105 РФ, МПК B27L 11/00(2006.01). Устройство для измельчения термически модифицированной древесины: № 2023116238: заявл. 21.06.2023: опубл. 26.09.2023 / В.Ю. Чернов, Ю.В. Чернов. Chernov V.Yu., Chernov Yu.V. Device for Grinding Thermally Modified Wood. Patent RF no. RU (11) 2804105, 2023. (In Russ.).

Сафин Р.Г., Степанов В.В., Хайруллина Э.Р., Гайнуллина А.А., Степанова Т.О. Современные строительные композиционные материалы на основе древесных отходов // Вестн. Казан. технол. ун-та. 2014. № 20. С. 123–128. Safin R.G., Stepanov V.V., Khairullina E.R., Gainullina A.A., Stepanova T.O. Modern Construction Composite Materials Based on Wood Waste. Vestnik Kazanskogo tekhnologicheskogo universiteta = Herald of Technological University, 2014, no. 20, pp. 123–128. (In Russ.).

Хайруллина Э.Р., Сафин Р.Г., Тунцев Д.В. Эффективность применения предварительной обработки древесного наполнителя в производстве древесноцементной композиции // Системы. Методы. Технологии. 2021. № 3(51). С. 85–91. Khairullina E.R., Safin R.G., Tuntsev D.V. The Effectiveness of the Use of Wood Filler Pretreatment in the Production of Wood-Cement Composition. Sistemy. Metody. Tekhnogolii = Systems. Methods. Technologies, 2021, no. 3(51), pp. 85–91. (In Russ.). https://doi.org/10.18324/2077-5415-2021-3-85-91

Хасаншин Р.Р. Термическое модифицирование древесного наполнителя в производстве композиционных материалов: дис. … д-ра техн. наук. Казань, 2019. 424 с. Khasanshin R.R. Thermal Modification of Wood Filler in the Production of Composite Materials: Doc. Tech. Sci. Dis. Kazan, 2019. 424 p. (In Russ.).

Чернов В.Ю., Гайсин И.Г., Палкин А.А., Мальцева Е.М. Бетон на основе наполнителя из ТМД: особенности материала и перспективы использования // Актуальные проблемы и перспективы развития лесопромышленного комплекса: материалы IV Междунар. науч.-практ. конф., Кострома, 8–11 сент. 2021 г. Кострома: Костром. гос. ун-т, 2021. С. 103–106. Chernov V.Yu., Gaisin I.G., Palkin A.A., Maltseva E.M. The Concrete Based on TMW Filler: Features of the Material and Prospects of Use. Actual Problems and Prospects for the Development of the Timber Industry: Materials of the IV International Scientific-Practical Conference. Kostroma, Kostroma State Universiry, 2021, pp. 103–106. (In Russ.).

Чернов В.Ю., Шарапов Е.С., Мальцева Е.М., Пегушина Е.Н. Исследование влияния термической модификации древесины на адгезионные и прочностные свойства древесно-цементной композиции // Вестн. МГСУ. 2023. Т. 18, вып. 9. С. 1394–1407. Chernov V.Yu., Sharapov E.S., Mal’ceva E.M., Pegushina E.N. Effect of Thermal Modification of Wood on Adhesion and Strength Properties of Wood-Cement Composition. Vestnik MGSU, 2023, vol. 18, iss. 9, pp. 1394–1407. (In Russ.). https://doi.org/10.22227/1997-0935.2023.9.1394-1407

Чижова М.А., Чижов А.П., Криворотова А.И. Технология композиционных материалов и изделий. Ч. 1. Технология композиционных материалов из древесных частиц и минеральных вяжущих. Красноярск: СибГТУ, 2012. 59 с. Chizhova M.A., Chizhov A.P., Krivorotova A.I. Technology of Сomposite Materials and Products. Part 1: Technology of Composite Materials from Wood Particles and Mineral Binders. Krasnoyarsk, SibSTU, 2012. 59 p. (In Russ.).

Чудинов Б.С. Вода в древесине. Новосибирск: Наука. Сиб. отд-ние, 1984. 270 с. Chudinov B.S. Water in Wood. Novosibirsk, Nauka Publ. Sib. Department, 1984. 270 p. (In Russ.).

Al-Akhras N., Abu-Alfoul B. Effect of Wheat Straw Ash on Mechanical Properties of Autoclaved Mortar. Cement and Concrete Research, 2002, vol. 32, iss. 6, pp. 859–863. https://doi.org/10.1016/S0008-8846(02)00716-0

Badilla P., Letelier V., Aros P., Careau F. Analysis of the Mechanical and Thermal Behaviour of Mortars Manufactured with Combined Use of Different Waste Products. IOP Conference Series: Earth and Environmental Science, 2020, vol. 503, art. no. 012017. https://doi.org/10.1088/1755-1315/503/1/012017

Cai Ch., Heräjärvi H., Haapala A. Effects of Environmental Conditions on Physical and Mechanical Properties of Thermally Modified Wood. Canadian Journal of Forest Research, 2019, vol. 49, no. 11, pp. 1434–1440. https://doi.org/10.1139/cjfr-2019-0180

Fu Q., Yan L., Thielker N.A., Kasal B. Effects of Concrete Type, Concrete Surface Conditions and Wood Species on Interfacial Properties of Adhesively-Bonded Timber – Concrete Composite Joints. International Journal of Adhesion and Adhesives, 2021, vol. 107, art. no. 102859. https://doi.org/10.1016/j.ijadhadh.2021.102859

Guo A., Bu A., Aamiri O.B., Satyavolu J., Sun Zh. Impact of Thermally Modified Wood on Mechanical Properties of Mortar. Construction and Building Materials, 2019, vol. 208, pp. 413–420. https://doi.org/10.1016/j.conbuildmat.2019.03.016

Hakkou M., Pétrissans M., Gérardin P., Zoulalian A. Investigations of the Reasons for Fungal Durability of Heat-Treated Beech Wood. Polymer Degradation and Stability, 2006, vol. 91, iss. 2, pp. 393–397. https://doi.org/10.1016/j.polymdegradstab.2005.04.042

Hill C., Altgen M., Rautkariauri L. Thermal Modification of Wood – a Review: Chemical Changes and Hygroscopicity. Journal of Materials Science, 2021, vol. 56, pp. 6581–6614. https://doi.org/10.1007/s10853-020-05722-z

Hill C.A.S. Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons, Ltd., 2006. 264 p.

Kostic S., Merk V., Berg J.K., Hass P., Burgert I., Cabane E. Timber-Mortar Composites: The Effect of Sol-Gel Surface Modification on the Wood-Adhesive Interface. Composite Structures, 2018, vol. 201, pp. 828–833. https://doi.org/10.1016/j.compstruct.2018.06.108

Liu Z., Han Ch., Li Q., Li X., Zhou H., Song X., Zu F. Study on Wood Chips Modification and its Application in Wood-Cement Composites. Case Studies in Construction Materials, 2022, vol. 17, art. no. e01350. https://doi.org/10.1016/j.cscm.2022.e01350

Liu Z., Han Ch., Li X., Zhou H., Song X., Zu F. Study on Wood Chips Modification and its Effect on the Mechanical Properties of Wood-Cement Composite Material. SSRN, 2022. https://doi.org/10.2139/ssrn.4020085

Ramdane R., Leila Kh., Abdelouahed A., Belachia M. Influence of Biomass Ash on the Performance and Durability of Mortar. Civil and Environmental Engineering Reports, 2022, vol. 32, iss. 2, pp. 53–71. https://doi.org/10.2478/ceer-2022-0019

Sanaev V.G., Zaprudnov V.I., Gorbacheva G., Oblivin A.N. Factors Affecting the Quality of Wood-Cement Composites. Bulletin of the Transilvania University of Braşov. Series II: Forestry, Wood Industry, Agricultural Food Engineering, 2016, vol. 9(58), no. 2, pp. 63–70.

Song X., Liu Z., Li X., Zhou H., Han Ch. Surface Modification of Wood and its Effect on the Interfacial Bonding Properties of Cement-Based Wood Composites. European Journal of Wood and Wood Products, 2023, vol. 81, pp. 897–909. https://doi.org/10.1007/s00107-023-01926-7

Verma Sh., Singh A., Gupta R., Sundriyal S. The Effect of Wood Ash on the Workability, Water Absorption, Compressive Strength in Cement Mortar. International Journal for Modern Trends in Science and Technology, 2023, vol. 9, iss. 4, pp. 368–373. https://doi.org/10.46501/IJMTST0904054

Published

2024-04-15

How to Cite

Chernov В., Gaisin И., Nosova А., and Maltseva Е. “Water Absorption of Thermally Modified Wood Filler of Thermal Wood-Cement Composition”. Lesnoy Zhurnal (Forestry Journal), no. 2, Apr. 2024, pp. 201-15, doi:10.37482/0536-1036-2024-2-201-215.

Issue

Section

BRIEF SUMMARIES AND EXPERIENCE EXCHANGE