Nitrosation of Lignosulfonates under Solid-Phase Catalysis Conditions

Authors

DOI:

https://doi.org/10.37482/0536-1036-2024-3-175-187

Keywords:

lignin, lignosulfonates, lignosulfonic acids, modification, nitrosation, solid-phase catalysis, spectrophotometry, nitrosolignosulfonic acids

Abstract

Lignosulfonates are the most common commercial lignin-based product due to their unique properties. Various methods are known for modifying lignosulfonates and lignosulfonic acids. This article presents the results of the development of a new approach to the production of nitrosated lignosulfonic acids. The method is based on a reaction catalyzed by cation exchange resins in the H-form: KU-2-8 cation exchanger and wofatite. The influence of reagent consumption and reaction duration on the course of nitrosation has been studied. The dynamics of the proposed nitrosation practically coincides with the dynamics of a similar reaction using sulfuric acid by the known method. The optimal consumption of sodium nitrite equals 15 %, and the optimal consumption of cation exchanger equals 100 % by weight of lignosulfonates. During the nitrosation of lignosulfonates, significant changes in the electronic spectra occur in the region of 280...500 nm. Two overlapping absorption bands appear with maxima at 300 and 330 nm, as well as an intense absorption band at 430 nm, due to nitroso groups conjugated with the aromatic nuclei of phenylpropane units. To analyze the ionization spectra, they have been deconvoluted. The resulting spectra are well approximated by 5 Gaussians with an error of no more than 5 %. Two options for carrying out the nitrosation reaction of lignosulfonates have been proposed: under static and dynamic conditions. It has been established that under dynamic conditions, nitroso derivatives of lignosulfonic acids are formed that do not contain metal cations, and the pH of the resulting solutions does not exceed 1.4. The elemental compositions of the isolated initial and nitrosated lignosulfonic acids have been determined. The nitrogen content of lignosulfonic acids has increased from 0.32 (initial) to 2.17 % (nitrosated). In addition, under dynamic conditions, an additional stage of separating the cation exchanger from the reaction medium by filtration is not required. New bands have appeared in the IR spectrum of nitrosated lignosulfonic acids: at 1540 cm–1, which is due to the presence of nitroso groups, and a wide absorption band at 1700...1715 cm–1, which can be caused by vibrations of the carboxyl group or the quinone monooxime tautomeric form of the guaiacyl structures of lignosulfonic acids.

Downloads

Download data is not yet available.

Author Biographies

Yuriy G. Khabarov, Northern (Arctic) Federal University named after M.V. Lomonosov

Doctor of Chemistry, Prof.; ResearcherID: P-1802-2015

Viacheslav A. Veshnyakov, Northern (Arctic) Federal University named after M.V. Lomonosov

Candidate of Chemistry; ResearcherID: E-3882-2017

Vadim A. Plakhin, Northern (Arctic) Federal University named after M.V. Lomonosov

Candidate of Chemistry; ResearcherID: AAH-6544-2020

Evgeniy A. Skripnikov, Northern (Arctic) Federal University named after M.V. Lomonosov

Postgraduate Student; ResearcherID: AFB-6325-2022

Denis V. Ovchinnikov, Northern (Arctic) Federal University named after M.V. Lomonosov

Candidate of Chemistry; ResearcherID: B-7162-2018

References

Беллами Л. Инфракрасные спектры сложных молекул. М.: Иностр. лит., 1963. 590 с. Bellamy L. The Infra-Red Spectra of Complex Molecules. Moscow, Inostrannaya literatura Publ., 1963. 590 p. (In Russ.).

Гоготов А.Ф. Нитритные обработки небеленых целлюлоз с последующей кислородно-щелочной делигнификацией // Химия растит. сырья. 1999. № 1. С. 89–97. Gogotov A.F. Nitrite Treatments of Unbleached Pulps Followed by Oxygen-Alkaline Delignification. Khimija Rastitel’nogo Syr’ja, 1999, no. 1, pp. 89–97. (In Russ.).

Гоготов А.Ф., Заказов А.Н., Бабкин В.А. Нитритная методика анализа бумажных композиций // Химия растит. сырья. 2001. № 2. С. 39–46. Gogotov A.F., Zakazov A.N., Babkin V.A. Nitrite Method for Analyzing Paper Compositions. Khimija Rastitel’nogo Syr’ja, 2001, no. 2, pp. 39–46. (In Russ.).

Закис Г.Ф., Можейко Л.Н., Телышева Г.М. Методы определения функциональных групп лигнина. Рига: Зинатне, 1975. 174 с. Zakis G.F., Mozheiko L.N., Telysheva G.M. Methods for Determining Functional Groups of Lignin. Riga, Zinatne Publ., 1975. 174 p. (In Russ.).

Сайкс П. Механизмы реакций в органической химии. 4-е изд. М.: Химия, 1991. 448 с. Sykes P. A Guidebook to Mechanism in Organic Chemistry. Moscow, Khimiya Publ., 1991. 448 p. (In Russ.).

Хабаров Ю.Г., Кошутина Н.Н. Изменение комплексообразующих свойств лигносульфонатов путем нитрозирования // Изв. вузов. Лесн. журн. 2001. № 5-6. С. 134–139. Khabarov Yu.G., Koshutina N.N. Changing of Complexing Properties of Lignosulfonates by Nitrosing. Lesnoy Zhurnal = Russian Forestry Journal, 2001, no. 5-6, pp. 134–139. (In Russ.).

Хабаров Ю.Г., Песьякова Л.А., Колыгин А.В. Использование азотистой кислоты при определении лигносульфоновых кислот // Журн. приклад. химии. 2006. Т. 79, вып. 9. С. 1571–1574. Khabarov Yu.G., Pes’yakova L.A., Kolygin A.V. Nitrosation of Lignosulfonic Acids for Their Colorimetric Determination. Russian Journal of Applied Chemistry, 2006, vol. 79, iss. 9, pp. 1555–1558. (In Russ.). https://doi.org/10.1134/S1070427206090333

Химия нитро- и нитрозогрупп / под ред. Г. Фойера. Т. 1. М.: Мир, 1972. 536 с. The Chemistry of the Nitro and Nitroso Groups. Vol. 1. Ed. by H. Feuer. Moscow, Mir Publ., 1972. 536 p. (In Russ.).

Химия нитро- и нитрозогрупп / под ред. Г. Фойера. Т. 2. М.: Мир, 1973. 301 с. The Chemistry of the Nitro and Nitroso Groups. Vol. 2. Ed. by H. Feuer. Moscow, Mir Publ., 1973. 301 p. (In Russ.).

Berlin A., Balakshin M. Chapter 18 – Industrial Lignins: Analysis, Properties, and Applications. Bioenergy Research: Advances and Applications, 2014, pp. 315–336. https://doi.org/10.1016/B978-0-444-59561-4.00018-8

Duval A., Lawoko M. A Review on Lignin-Based Polymeric, Micro- and NanoStructured Materials. Reactive and Functional Polymers, 2014, vol. 85, pp. 78–96. https://doi.org/10.1016/j.reactfunctpolym.2014.09.017

Graupner N. Application of Lignin as Natural Adhesion Promoter in Cotton Fibre-Reinforced Poly(Lactic Acid) (PLA) Composites. Journal of Materials Science, 2008, vol. 43, pp. 5222–5229. https://doi.org/10.1007/s10853-008-2762-3

Housecroft C.E., Sharpe A.G. Inorganic Chemistry. 4th ed. London, Pearson Education Limited, 2012. 1213 p.

Kazzaz A.E., Fatehi P. Technical Lignin and its Potential Modification Routes: A Mini-Review. Industrial Crops and Products, 2020, vol. 154, art. no. 112732. https://doi.org/10.1016/j.indcrop.2020.112732

Laurichesse S., Avérous L. Chemical Modification of Lignins: Towards Biobased Polymers. Progress in Polymer Science, 2014, vol. 39, iss. 7, pp. 1266–1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004

Liu Y. Tert-Butyl Nitrite. Synlett, 2011, iss. 8, pp. 1184–1185. https://doi.org/10.1055/s-0030-1259948

Mimini V., Kabrelian V., Fackler K., Hettegger H., Potthast A., Rosenau T. Lignin-Based Foams as Insulation Materials: a Review. Holzforschung, 2019, vol. 73, no. 1, pp. 117–130. https://doi.org/10.1515/hf-2018-0111

Miyahara M., Kamiya S., Nakadate M. Nitrosation of 1,3-Diarylureas with Nitrosyl Chloride, Dinitrogen Trioxide and Dinitrogen Tetroxide in Dimethylformamide. Chemical and Pharmaceutical Bulletin, 1983, vol. 31, iss. 1, pp. 41–44. https://doi.org/10.1248/cpb.31.41

Pearl I.A., Benson H.K. A Nitrosolignin Colorimetric Test for Sulfite Waste Liquor in Sea Water. Paper Trade Journal, 1940, vol. 111, pp. 235–236.

Shchavlev A.E., Pankratov A.N., Enchev V. Intramolecular Hydrogen-Bonding Interactions in 2-Nitrosophenol and Nitrosonaphthols: Ab Initio, Density Functional, and Nuclear Magnetic Resonance Theoretical Study. The Journal of Physical Chemistry A, 2007, vol. 111, iss. 30, pp. 7112–7123. https://doi.org/10.1021/jp068540r

Strassberger Z., Tanase S., Rothenberg G. The Pros and Cons of Lignin Valorisation in an Integrated Biorefinery. RSC Advances, 2014, vol. 4, iss. 48, pp. 25310–25318. https://doi.org/10.1039/C4RA04747H

Published

2024-06-14

How to Cite

Khabarov Ю., Veshnyakov В., Plakhin В., Skripnikov Е., and Ovchinnikov Д. “Nitrosation of Lignosulfonates under Solid-Phase Catalysis Conditions”. Lesnoy Zhurnal (Forestry Journal), no. 3, June 2024, pp. 175-87, doi:10.37482/0536-1036-2024-3-175-187.

Issue

Section

TECHNOLOGY OF WOOD CHEMICAL PROCESSING AND PRODUCTION OF WOOD-POLYMER COMPOSITES