Specific Energy Costs of Grinding Wood when Preparing a Composite for 3D-Printing

Authors

DOI:

https://doi.org/10.37482/0536-1036-2024-4-159-176

Keywords:

wood flour, wood-polymer composite, wood grinding, specific energy costs, particle size distribution

Abstract

The Northwestern Federal District is a region of Russia rich in a variety of wood species. The properties of wood in this region differ significantly from the properties of wood grown in other countries or in the eastern part of Russia, which leads to differences in energy costs of grinding wood. The aim of this research has been to estimate the specific energy costs of grinding wood to the state of wood flour, which will be used as the basis for wood polymer composite consumables in additive technologies. Wood flour has been obtained by grinding wood in a laboratory disk mill, repeatedly reducing the particle size. The granulometric composition has been analyzed for beech, oak, larch, alder and pine wood at 1, 3, 5 and 10 grinding cycles. Particle sizes have been determined by analyzing images obtained using an optical microscope and processed in the ImageJ graphic program. The specific energy costs of grinding have been estimated by recording the power with a wattmeter every second with repeated feeding of wood flour for the known mill productivity. When calculating the specific energy consumption, the moisture content of each wood species has been taken into account, as well as productivity losses associated with the adhesion of wood particles to the working surfaces of the dispersing set and the inner area of the disk mill body. The research has revealed a relationship between the specific energy costs and the particle size of wood flour obtained from various wood species. Regression analysis of curves corresponding to different wood species has made it possible to obtain exponential and power-law dependencies that do not contradict the fundamental theoretical laws of grinding solid particles. Based on these results, pine wood flour has been recognized as the most energy-efficient option. The established dependencies can be used to predict the specific energy consumption for grinding beech, oak, larch, alder and pine wood in disk mills.

Downloads

Download data is not yet available.

Author Biographies

Nikolay P. Midukov, Saint-Petersburg State University of Industrial Technologies and Design

Doctor of Engineering; ResearcherID: H-2514-2019

Nikolay V. Evdokimov, Saint-Petersburg State University of Industrial Technologies and Design

Senior Lecturer

Victor S. Kurov, Saint-Petersburg State University of Industrial Technologies and Design

Doctor of Engineering, Prof.; ResearcherID: V-7289-2017

Valerii V. Korshunov, LLC “DrobTechMash”

Technical Director; ResearcherID: JHT-5558-2023

References

Алашкевич Ю.Д., Юртаева Л.В., Решетова Н.С., Марченко Р.А. Влияние ножевого способа размола волокнистой массы на процесс получения порошковой целлюлозы // Химия растит. сырья. 2020. № 4. С. 493–499. Alashkevich Yu.D., Yurtaeva L.V., Reshetova N.S., Marchenko R.A. The Influence of the Knife Method of Grinding Pulp on the Process of Obtaining Powdered Cellulose. Khimiya Rastitel’nogo Syr’ya, 2020, no. 4, pp. 493–499. (In Russ.). https://doi.org/10.14258/jcprm.2020048121

Борисов Н.А. Производство древесной муки тонкого помола. М., 1964. 21 с. Borisov N.A. Production of Finely Ground Wood Flour. Moscow, 1964. 21 p. (In Russ.).

Гаузе А.А., Гончаров В.Н. Основы теории и расчета оборудования для подготовки бумажной массы. СПб., 2017. Ч. I. 84 с. Gauze A.A., Goncharov V.N. Fundamentals of Theory and Calculation of Equipment for Preparing Paper Pulp. St. Petersburg, 2017, part 1. 84 p. (In Russ.).

Клесов А.А. Древесно-полимерные композиты. СПб.: Науч. основы и технологии, 2010. 735 с. Klesov A.A. Wood-Polymer Composites. St. Petersburg, Nauchnye osnovy i tekhnologii Publ., 2010. 735 p. (In Russ.).

Леонович А.А. Физико-химические основы образования древесных плит. СПб.: Химиздат, 2003. 192 с. Leonovich A.A. Physico-Chemical Basis for the Formation of Wood Boards. St. Petersburg, Khimizdat Publ., 2003. 192 p. (In Russ.).

Леонович А.А. Технология древесных плит: прогрессивные решения. СПб.: Химиздат, 2005. 206 с. Leonovich A.A. Wood-Based Panel Technology: Progressive Solutions. St. Petersburg, Khimizdat Publ., 2005. 206 p. (In Russ.).

Леонович А.А. Новые древесноплитные материалы. СПб.: Химиздат, 2008. 158 с. Leonovich A.A. New Wood-Based Materials. St. Petersburg, Khimizdat Publ., 2008. 158 p. (In Russ.).

Липилин А.Б., Векслер М.В., Коренюгина Н.В., Морозов А.М., Кононов Г.Н., Косарев К.Л., Кудряшов А.В. Тонкий помол и сушка древесного сырья в вихревой мельнице-нагревателе // Вестн. МГУЛ – Лесн. вестн. 2013. № 3. С. 139–144. Lipilin A.B., Vexler M.V., Korenyugina N.V., Morozov A.M., Kononov G.N., Kosarev K.L., Kudryashov A.V. Thin Grinding and Drying of Timber in Vortex Mill-Heater. Lesnoy Vestnik = Forestry Bulletin, 2013, no. 3, pp. 139–144. (In Russ.).

Мидуков Н.П., Куров В.С., Евдокимов Н.В. Биорефайнинг древесноволокнистого сырья в композиции материала для аддитивных технологий // Хим. волокна. 2023. № 1. С. 66–72. Midukov N.P., Kurov V.S., Evdokimov N.V. Biorefining of Wood-Fibre Raw Material in a Material Composition for Additive Technologies. Khimicheskie volokna = Fibre Chemistry, 2023, vol. 55, no. 1, pp. 53–58. (In Russ.). https://doi.org/10.1007/s10692-023-10426-6

Морозов А.М., Кононов Г.Н., Косарев К.Л., Кудряшов А.В. Использование сканирующей электронной микроскопии для изучения нанопористой структуры продуктов переработки древесины // Вестн. МГУЛ – Лесн. вестн. 2013. № 2. С. 72–76. Morozov A.M., Kononov G.N., Kosarev K.L., Kudryashov A.V. Using of Scanning Electron Microscopy to Studying Nanoporous Structure Products of Timber Processing. Lesnoy Vestnik = Forestry Bulletin, 2013, no. 2, pp. 72–76. (In Russ.).

Патент 2318655 РФ, МПК B27L11/06, A23K1/12. Способ получения древесной муки: № 2006123183/12: заявл. 29.06.2006: опубл. 10.03.2008 / А.А. Политов, О.В. Бершак, О.И. Ломовский. Politov A.A., Bershak O.V., Lomovskij O.I. Method for Production of Wood Flour. Patent RF, no. RU 2318655 C1, 2008. (In Russ.).

Сиденко П.М. Измельчение в химической промышленности. 2-е изд., перераб. М.: Химия, 1977. 368 с. Sidenko P.M. Grinding in the Chemical Industry: 2nd ed., revised. Moscow, Khimiya Publ., 1977. 368 p. (In Russ.).

Спиглазов А.В., Ставров В.П. Влияние размеров древесных частиц и степени наполнения на текучесть композиций с полипропиленом // Пласт. массы. 2004. № 12. С. 50–52. Spiglazov A.V., Stavrov V.P. The Influence of the Size of Wood Particles and the Degree of Filling on the Fluidity of Compositions with Polypropylene. Plasticheskie massy, 2004, no. 12, pp. 50–52. (In Russ.).

Хинт И.А., Кузьминов В.А. Производство силикальцита и его применение в жилищном строительстве. Таллин, 1958. 216 с. Khint I.A., Kuz’minov V.A. Production of Silicalcite and its Use in Housing Construction. Tallin, 1958. 216 p. (In Russ.).

Цывин М.М., Котцов С.Г., Шмаков И.В. Производство древесной муки. М.: Лесн. пром-сть, 1982. 134 с. Tsyvin M.M., Kottsov S.G., Shmakhov I.V. Wood Flour Production. Moscow, Lesnaya promyshlennost’ Publ., 1982. 134 p. (In Russ.).

Чистова Н.Г., Матыгулина В.Н., Алашкевич Ю.Д. Подготовка древесноволокнистых полуфабрикатов в ножевых размалывающих машинах различной модификации // Химия растит. сырья. 2020. № 4. С. 459–466. Chistova N.G., Matygulina V.N., Alashkevich Yu.D. Preparation of Wood-Fiber SemiFinished Products in Knife Machines of Various Modification. Khimiya Rastitel’nogo Syr’ya, 2020, no. 4, pp. 459–466. (In Russ.). https://doi.org/10.14258/jcprm.2020048189

Aliev S.S., Egamberdiev E.A., Akmalova G.Yu., Ilkhamov G.Yu. Analysis of Physical-Mechanical Properties of New Type of Wood-Polymer Composite Materials. Harvard Educational and Scientific Review, 2023, vol. 3, iss. 1, pp. 48–53.

Delviawan A., Kojima Y., Kobori H., Suzuki S., Aoki K., Ogoe S. The Effect of Wood Particle Size Distribution on the Mechanical Properties of Wood–Plastic Composite. Journal of Wood Science, 2019, vol. 65, art. no. 67. https://doi.org/10.1186/s10086-019-1846-9

Karinkanta P., Ämmälä A., Illikainen M., Niinimäki J. Fine Grinding of Wood – Overview from Wood Breakage to Applications. Biomass and Bioenergy, 2018, vol. 113, pp. 31–44. https://doi.org/10.1016/j.biombioe.2018.03.007

Pokhrel G., Gardner D.J., Han Y. Properties of Wood–Plastic Composites Manufactured from Two Different Wood Feedstocks: Wood Flour and Wood Pellets. Polymers, 2021, vol. 13, no. 16, art. no. 2769. https://doi.org/10.3390/polym13162769

Pokhrel G., Han Y., Gardner D.J. Comparative Study of the Properties of Wood Flour and Wood Pellets Manufactured from Secondary Processing Mill Residues. Polymers, 2021, vol. 13, no. 15, art. no. 2487. https://doi.org/10.3390/polym13152487

Pušnik Črešnar K., Fras Zemljič L., Slemenik Perše L., Bek M. Effect of Wood Fiber Loading on the Chemical and Thermo-Rheological Properties of Unrecycled and Recycled Wood-Polymer Composites. Applied Sciences, 2020, vol. 10, no. 24, art. no. 8863. https://doi.org/10.3390/app10248863

Rajaonariony K.R., Mayer-Laigle C., Piriou B., Rouau X. Comparative Comminution Efficiencies of Rotary, Stirred and Vibrating Ball-Mills for the Production of Ultrafine Biomass Powders. Energy, 2021, vol. 227, art. no. 120508. https://doi.org/10.1016/j.energy.2021.120508

Sturges H.A. The Choice of a Class Interval. Journal of the American Statistical Association, 1926, vol. 21, iss. 153, pp. 65–66. https://doi.org/10.1080/01621459.1926.10502161

Wang J., Gao J., Brandt K.L., Wolcott M.P. Energy Consumption of Two-Stage Fine Grinding of Douglas-Fir Wood. Journal of Wood Science, 2018, vol. 64, pp. 338–346. https://doi.org/10.1007/s10086-018-1712-1

Published

2024-08-05

How to Cite

Midukov Н. ., Evdokimov Н. ., Kurov В. ., and Korshunov В. . “Specific Energy Costs of Grinding Wood When Preparing a Composite for 3D-Printing”. Lesnoy Zhurnal (Forestry Journal), no. 4, Aug. 2024, pp. 159-76, doi:10.37482/0536-1036-2024-4-159-176.

Issue

Section

TECHNOLOGY OF WOOD CHEMICAL PROCESSING AND PRODUCTION OF WOOD-POLYMER COMPOSITES