The Engineering Calculation of Flexible Shells of Timber-Rafting Anchors
DOI:
https://doi.org/10.37482/0536-1036-2024-5-159-174Keywords:
timber rafting, mobile anchor, floating structures, raft holding, container to be filled, flexible shellAbstract
Currently, the issue of delivering wood raw materials from remote forest areas, where the largest volumes are located, is relevant. Often, this delivery is economically justified only when using a network of medium and small rivers with the use of environmentally friendly technologies. On such rivers, it is preferable to use mobile anchors, in particular shore fillable ones, for fixing timber-rafting objects. A description has been given of a new modification of such an anchor, which differs from the prototype by a container having a flexible shell. This allows to significantly reduce the material consumption for manufacturing the container, the dimensions of the anchor in the transport position, and to produce anchors of any realistic size. The choice of the most rational option for such a container implies the scientific justification of its parameters. The aim of the study is to develop a scientific basis for this justification. Analytical formulas have been theoretically obtained for determining the basic geometric characteristics of the cross-section of the container under consideration. These formulas are useful in scientific research, but their application is very problematic in practical engineering calculations. This is due to the dependence of the specified characteristics on elliptic integrals and parameters, which are very difficult to measure in engineering practice. Having performed calculations using these formulas for a single cross-sectional area, we have obtained its specific geometric characteristics for various shapes, i.e. for various width-to-height ratios of a container to be filled. The results of the calculations have been approximating dependencies linking the named characteristics with the specified ratio, which is called the shape factor. Multiplying the specific characteristics by the square root of the cross-sectional area gives the absolute values of the corresponding characteristics. As a result, we have obtained formulas convenient for practical use, allowing to determine the width and height of the container to be filled, the width of its base, the perimeter of the cross-section, the heights of the zero pressure line and the extreme lateral point of the cross-section above the base of the container. The accuracy of calculations based on these and analytical formulas is almost the same. A formula for determining the specific tension of a flexible container shell has been obtained. The nature and degree of influence of the shape factor and length of the container on its other geometric characteristics have been established. An algorithm for substantiating the key parameters of a container to be filled with a flexible shell has been developed using the described results.
Downloads
References
A. c. 1523508 СССР, МПК В65G 69/20 (2006.01). Устройство для берегового крепления наплавных сооружений: No 4343248/31-11: заявл. 03.11.1987: опубл. 23.11.1989 / В.Г. Таскаев. Taskaev V.G. A Device for Shore Anchorage of Floating Structures. USSR, no. SU 1523508, 1989. (In Russ.).
A. c. 1548321 СССР, МПК Е02В 3/06 (2006.01). Устройство для берегового крепления наплавных сооружений: No 4360415/30-15: заявл. 06.01.1988: опубл. 07.03.1990 / В.Г. Таскаев, Г.Г. Чешков. Taskaev V.G., Cheshkov G.G. A Device for Shore Anchorage of Floating Structures. USSR, no. SU 1548321, 1990. (In Russ.).
Войткунский Я.И., Фаддеев Ю.И., Федяевский К.К. Гидромеханика. 2-е изд., перераб. и доп. Л.: Судостроение, 1982. 455 с. Vojtkunskij Yа.I., Fadeev Yu.I., Fedyaevskij K.K. Hydromechanics: 2nd ed., revised and enlarged. Leningrad, Sudostroenie Publ., 1982. 455 p. (In Russ.).
Еврокуб // Сайт «Завода удачных теплиц». Режим доступа: https://tepli4ki.ru/ (дата обращения: 17.01.22). Eurocube. The Website of “The Successful Greenhouse Plant”. (In Russ.).
Козлов К.В., Беляев Н.С., Посыпанов С.В. Анализ крепления лесосплавных объектов при коротких сроках навигации // Инновации. Наука. Образование. 2021. No 36. С. 1543–1546. Kozlov K.V., Belyaev N.S., Posypanov S.V. Analysis of Anchoring of Timber-Rafting Facilities for Short Navigation Periods. Innovatsii. Nauka. Obrazovanie, 2021, no. 36, pp. 1543–1546. (In Russ.).
Козлов К.В., Посыпанов С.В. Использование мобильных наполняемых опор для крепления наплавных объектов на лесосплаве // Инновации. Наука. Образование. 2020. No 23. С. 541–545. Kozlov K.V., Posypanov S.V. The Use of Mobile Fillable Anchors for Holding the Floating Objects in Timber Rafting. Innovatsii. Nauka. Obrazovanie, 2020, no. 23, pp. 541–545. (In Russ.).
Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. 4-е изд. М.: Наука, 1977. 831 с. Korn G., Korn T. Handbook of Mathematics for Researchers and Engineers: 4th ed. Moscow, Nauka Publ., 1977. 831 p. (In Russ.).
Патент 119757 РФ, МПК E02B 1/00 (2006.01), E02B 3/00 (2006.01), E01D 19/00 (2006.01). Анкерная опора для берегового крепления наплавных сооружений: No 2012116665/13: заявл. 24.04.2012: опубл. 27.08.2012 / Г.Я. Суров, А.Н. Вихарев, С.Е. Лихачев, А.А. Емельянов. Surov G.Ya., Vikharev A.N., Likhachev S.E., Emel’yanov A.A. The Anchor for Holding the Floating Structures to the Shore. Patent RF no. RU 119757, 2012. (In Russ.).
Патент 2313632 РФ, МПК Е02В 3/00 (2006.01), В65G 69/20 (2006.01), Е02В 15/00 (2006.01). Устройство для берегового крепления наплавных сооружений: No 2006100940/11: заявл. 10.01.2006: опубл. 27.12.2007 / Г.Я. Суров, А.Н. Вихарев. Surov G.Ya., Vikharev A.N. A Device for Shore Anchorage of Floating Structures. Patent RF no. RU 2313632, 2007. (In Russ.).
Патякин В.И., Дмитриев Ю.Я., Зайцев А.А. Водный транспорт леса. М.: Лесн. пром-сть, 1985. 336 с. Patyakin V.I., Dmitriev Yu.Ya., Zaytsev A.A. Water Log Movement. Moscow, Lesnaya promyshlennost’ Publ., 1985. 336 p. (In Russ.).
Посыпанов С.В., Козлов К.В. Теоретическое обоснование держащей силы мобильной опоры для крепления лесосплавных объектов // Изв. вузов. Лесн. журн. 2024. No 1. С. 141–151. Posypanov S.V., Kozlov K.V. Theoretical Justification of the Holding Power of a Mobile Anchor for Holding Timber-Rafting Objects. Lesnoy Zhurnal = Russian Forestry Journal, 2024, no. 1, pp. 141–151. (In Russ.). https://doi.org/10.37482/0536-1036-2024-1-141-151
Таскаев В.Г. Береговые опоры лесосплава. Архангельск: АЛТИ, 1991. 84 с. Taskaev V.G. Shore Timber Rafting Anchors. Arkhangelsk, Arkhangelsk Forestry Engineering Institute Publ., 1991. 84 p. (In Russ.).
Ткани Hanwha // Торговый дом «Технический Текстиль»: сайт. Режим доступа: https://ttex.ru/catalog/tkani_hanwha_koreya/ (дата обращения: 17.01.24). Hanwha Fabrics. The Website of the Trading House “Technical Textile”. (In Russ.).
Цытович Н.А. Механика грунтов. 4-е изд., перераб. и доп. М.: Высш. шк., 1983. 288 с. Tsytovich N.A. Mechanics of Soils: 4th ed., revised and enlarged. Moscow, Vyshaya shkola Publ., 1983. 288 p. (In Russ.).
Byrd P.F., Friedman M.D. Handbook of Elliptic Integrals for Engineers and Scientists: 2nd ed. Heidelberg, Berlin, New York, Springer-Verlag, 1971, vol. 67. 360 p.
Field A. Discovering Statistics Using SPSS: 3rd ed. London, SAGE Publications, 2009. 821 p.
Gradshteyn I.S., Ryzhik I.M. Table of Integrals, Series and Products: 6th ed. San Diego, Academic Press, 2000. 46 p.
Kleinstreuer С. Modern Fluid Dynamics. Dordrecht, Heidelberg, London, New York, Springer, 2010. 620 p.
Verruijt A. Soil Mechanics. Delft University of Technology, 2012. 331 p.
Yam K.L. The Wiley Encyclopedia of Packaging Technology. John Wiley & Sons, 2009. 1376 p. https://doi.org/10.1002/9780470541395
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 С.В. Посыпанов, К.В. Козлов (Автор)
This work is licensed under a Creative Commons Attribution 4.0 International License.