The Effect of Intensive Oxidation of Hydrogen Sulfide from Flue Gases of a Soda Recovery Boiler in the Production of Pulp

Authors

DOI:

https://doi.org/10.37482/0536-1036-2024-5-188-202

Keywords:

ejector Venturi scrubber, flue gases, sulfate dust, hydrogen sulfide, self-formation of hydrogen peroxide, condensation, fine droplets, oxidation

Abstract

Despite the transition to the Swedish technology for regenerating black liquor from pulp production plants, even in those regions of Russia where the standard daily average levels of hydrogen sulfide and methyl mercaptan in the air of populated areas have been achieved, a number of problems remain with emissions of reduced sulfur. In many cities, onetime concentrations of reduced sulfur, especially at night, may exceed the permissible ones. In addition to flue gas emissions from soda recovery boilers, there are other, less intensive sources of harmful emissions in the cooking, evaporation and wood-chemical workshops, in the causticization and lime regeneration workshops, there are emissions from unorganized sources and from the open surface of wastewater treatment facilities. The population living near such plants feels the unpleasant odor of methyl mercaptan. This study has aimed to develop a new technology for reducing gas emissions of reduced sulfur into the environment, applicaple for different sources. The results of testing an industrial installation for purification of gas emissions from a soda recovery boiler in a scrubber with nozzle irrigation have been presented. Based on the measurements of the technological parameters of the operation mode of the gas purification plant and the determination of the composition of the irrigation solution, the analysis of the results obtained has been performed. During the tests, a high degree of hydrogen sulfide capture at a low pH value has been achieved. It has been established that hydrogen sulfide has been captured as a result of its oxidation before entering the irrigation solution in fine droplets of condensate formed on micron-sized particles of sulfate and sodium carbonate. The results of this study have been compared with the results of the studies conducted by Stanford University and the P.P. Shirshov Institute of Oceanology of the Russian Academy of Sciences. The possibility of hydrogen peroxide formation under our test conditions in the surface layer of fine droplets formed during the condensation of water vapour on dust particles has been analyzed. The suposed cause of the obtained effect has been determined to be the thermomechanical deformation of the surface layer of the droplets.

Downloads

Download data is not yet available.

Author Biographies

Sergey V. Aniskin, Saint-Petersburg State University of Industrial Technologies and Design

Doctor of Engineering, Prof.

Victor S. Kurov, Saint-Petersburg State University of Industrial Technologies and Design

Doctor of Engineering, Prof.

References

Анискин С.В. Конденсация сульфатной пыли дымовых газов содорегенерационных котлов в струйном газопромывателе // Вестн. СПГУТД. Сер. 1: Естеств. и техн. науки. 2018. No 3. С. 81–83. Aniskin S.V. Condensation of Sulphate Dust of Flue Gases of Sodoregeneration Boilers in a Jet Gas Washer. Vestnik of St. Petersburg State University of Technology and Design. Series 1: Natural and Technical Science, 2018, no. 3, pp. 81–83. (In Russ.).

Анискин С.В., Куров В.С. Полидисперсная модель эжекции газа в прямоточных распылительных аппаратах вытеснения целлюлозного производства // Вестн. СПГУТД. Сер. 4: Пром. технологии. 2021. No 4. C. 91–102. Aniskin S.V., Kurov V.S. Polydisperse Model of Gas Ejection in Direct-Flow Atomizing Devices of Pulp Production Displacement. Vestnik of St. Petersburg State University of Technology and Design. Series 4: Industrial Technologies, 2021, no. 4, pp. 91–102. (In Russ.). https://doi.org/10.46418/2619-0729_2021_4_11

Анискин С.В., Яковлев В.А., Телюкин Г.В. Реконструкция установки для очистки дымовых газов // Бум. пром-сть. 1989. No 6. С. 12–13. Aniskin S.V., Yakovlev V.A., Telyukin G.V. Reconstruction of the Flue Gas Purification Plant. Bumazhnaya promyshlennost’, 1989, no. 6, pp. 12–13. (In Russ.).

Вилесов Н.Г. О некоторых особенностях взаимодействия сернистого ангидрида с сероводородом во влажных газах // Журн. приклад. химии. 1980. Т. 53, No 1. С. 2401–2403. Vilesov N.G. On Some Features of the Interaction of Sulfur Dioxide with Hydrogen Sulfide in Wet Gases. Zhurnal prikladnoy khimii, 1980, vol. 53, no. 1, pp. 2401–2403. (In Russ.).

Дело No А78-4663/2020 о выбросах Селенгинского целлюлозно-бумажного комбината. Режим доступа: http://www.chita.arbitr.ru (дата обращения: 25.09.24). Case no. A78-4663/2020 on the Emissions from the Selegninsk Pulp and Paper Mill. Available at: http://www.chita.arbitr.ru (accessed 25.09.24). (In Russ.).

Домрачев Г.А., Селивановский Д.А. Роль звука и жидкой воды как динамически нестабильной полимерной системы в небиогенном происхождении кислорода и возникновении жизни на Земле. Препринт No 1. Горький: ИМХ АН СССР. 1990. 17 с. Domrachev G.A., Selivanovsky D.A. The Role of Sound and Liquid Water as a Dynamically Unstable Polymer System in the Non-Biogenic Origin of Oxygen and the Emergence of Life on Earth. Preprint no. 1. Gorky, Institute of Organometallic Chemistry of the USSR Academy of Sciences, 1990. 17 p. (In Russ.).

Косиченко Ю.М., Сильченко В.Ф. Технологии удаления сероводорода в процессе обработки подземных вод // Экология и вод. хоз-во. 2020. No 1 (04). С. 43–59. Kosichenko Yu.M., Silchenko V.F. Hydrogen Sulfide Removal Technologies in Groundwater Treatment. Ekologiya i vodnoe khozyajstvo = Ecology and Water Management, 2020, no. 1 (04), pp. 43–59. (In Russ.). https://doi.org/10.31774/2658-7890-2020-1-43-59

Латынина С. Группа «Илим» приговорила Братск к вечному запаху метилмеркаптана // МК-Байкал. 16.12.2014. Режим доступа: https://baikal.mk.ru/articles/2014/12/16/gruppa-ilim-prigovorila-bratsk-k-vechnomu-zapakhu-metilmerkaptana.html (дата обращения: 19.09.24). Latynina S. The “Ilim” Group Has Condemned Bratsk to the Eternal Smell of Methylmercaptan. MK-Baikal, 16.12.2014. (In Russ.).

Марьяш С.А., Дрововозова Т.И. Очистка подземных вод, содержащих сероводород, пероксидом водорода // Инженер. вестн. Дона. 2017. No 4 (47). Ст. No 176. Режим доступа: ivdon.ru/ru/magazine/archive/n4y2017/4444 (дата обращения: 19.09.24). Mariach S.A., Drovovozova T.I. Purification of Hydrogen Sulfide-Containing Groundwater by Hydrogen Peroxide. Inzhenernyj vestnik Dona = Engineering Journal of Don, 2017, no. 4 (47), art. no. 176. (In Russ.).

Мошкова Н. Больше не «горячая точка»! Производство, которое заботится об экологии // АиФ Архангельск. 04.03.2020. Режим доступа: https://arh.aif.ru/money/bolshe_ne_goryachaya_tochka_proizvodstvo_kotoroe_zabotitsya_ob_ekologii (дата обращения: 19.09.24). Moshkova N. No Longer a “Hot Spot”! Production that Cares about the Environment. AiF Arkhangelsk, 04.03.2020. (In Russ.).

Наилучшие существующие технологии в целлюлозно-бумажной промышленности: сб. Ч. 1, 2. СПб.: Экология и бизнес, 2004. The Best Available Technologies in the Pulp and Paper Industry: Collection. Part 1, 2. St. Petersburg, Ekologiya i biznes Publ., 2004. 509 p. (In Russ.).

Обнародованы результаты эко-экспертизы, проведенной по требованиям жителей Сегежи // КарелИнформ. 10.09.2020. The Results of the Eco-Expertise Conducted at the Request of Segezha Residents Have Been Made Public. KarelInform. 10.09.2020. (In Russ.).

Стунжас П.А. Механохимическая нестабильность воды // Физика водных растворов: сб. тр. Второй всерос. конф. М., 2019. С. 28–30. Stunzhas P.A. Mechanochemical Instability of Water. Fizika vodnykh rastvorov = Physics of Aqueous Solutions: Book of Abatracts of the 2nd Russian Conference. Moscow, 2019, pp. 28–30. (In Russ.).

Фесенко Л.H., Бабаев А.А., Игнатенко С.И., Черкесов А.Ю. Каталитическая очистка воды от сероводорода кислородом методом сухой фильтрации на антрацитовой загрузке // Водоснабжение и водоотведение: качество и эффективность: сб. тр. ХI Междунар. науч.-практ. конф. Кемерово: ЭКСПО-Сибирь, 2008. С. 55–60. Fesenko L.N., Babaev A.A., Ignatenko S.I., Cherkesov A.Yu. Catalytic Purification of Water from Hydrogen Sulfide with Oxygen by Dry Filtration on Anthracite Medium. Water Supply and Sanitation: Quality and Efficiency: Proceedings of the XI International Scientific and Practical Conference. Kemerovo, EKSPO Sibir’ Publ., 2008, pp. 55–60. (In Russ.).

Широков Ю.А. Экологическая безопасность на предприятии. 3-е изд., стер. СПб.: Лань, 2022. 360 с. Shirokov Yu.A. Environmental Safety at the Enterprise. 3rd ed., reprint. St. Petersburg, Lan’ Publ., 2022. 360 p. (In Russ.).

Яковлев В.А., Григорьева Н.В., Макаренко В.А., Верх Е.А., Полторацкий Г.М. Изучение равновесий, имеющих место при абсорбции серосодержащих соедине ний из газовых выбросов ЦБП // Изв. вузов. Лесн. журн. 1991. No 2. С. 91–93. Yakovlev V.A., Grigorieva N.V., Makarenko V.A., Verkh E.A., Poltoratsky G.M. The study of Equilibria Occurring during the Absorption of Sulfur-Containing Compounds from Gas Emissions of the Pulp and Paper Industry. Lesnoy Zhurnal = Russian Forestry Journal, 1991, no. 2, pp. 91–93. (In Russ.).

Dulay M.T., Huerta-Aguilar C.A., Chamberlayne C.F., Zare R.N., Davidse A., Vukovic S. Effect of Relative Humidity on Hydrogen Peroxide Production in Water Droplets. QRB Discovery, 2021, vol. 2, art. no. e8. https://doi.org/10.1017/qrd.2021.6

Katsuhiko K., Takayuki F. Gas Purification Method. Patent Japan no. 3-109, 1991.

Lee J.K., Han H.S., Chaikasetsin S., Marron D.P., Waymouth R.M., Prinz F.B., Zare R.N. Condensing Water Vapor to Droplets Generates Hydrogen Peroxide. PNAS, 2020, vol. 117 (49), pp. 30934–30941. https://doi.org/10.1073/pnas.2020158117

Lee J.K., Samanta D., Nam H.G., Zare R.N. Micrometer-Sized Water Droplets Induce Spontaneous Reduction. Journal of the American Chemical Society, 2019, vol. 141, iss. 27, pp. 10585–10589. https://doi.org/10.1021/jacs.9b03227

Lee J.K., Samanta D., Nam H.G., Zare R.N. Spontaneous Formation of Gold Nano-Structures in Aqueous Microdroplets. Nature Communications, 2018, vol. 9, art. no. 1562. https://doi.org/10.1038/s41467-018-04023-z

Lee J.K., Walker K.L., Han H.S., Kang J., Prinz F.B., Waymouth R.B., Nam H.G., Zare R.N. Spontaneous Generation of Hydrogen Peroxide from Aqueous Micro-droplets. PNAS, 2019, vol. 116 (39), pp. 19294–19298. https://doi.org/10.1073/pnas.1911883116

Mondal S., Acharya S., Biswas R., Bagchi B., Zare R.N. Enhancement of Reaction Rate in Small-Sized Droplets: A Combined Analytical and Simulation Study. The Journal of Chemical Physics, 2018, vol. 148, iss. 24, art. no. 244704. https://doi.org/10.1063/1.5030114

Rafson H.J. Method for Removing Volatile Organic Compounds from Air Streams. Patent US no. 4844874, 1990.

Rafson H.J., Vries de E. Apparatus for Neutralizing Odors. Patent US no. 4308040, 1981.

Study Reveals Benefits of Atomized Mist Scrubbing at Waste Water Plants. Water and Sewage International, 1991, no. 13, art. no. 12.

Veselov Yu.S. Effect of Hydrogen Peroxide Accumulation at Reverse-Osmosis Freshening of Seawater Desalination. Khimiya i Tekhnologiya Vody, 1991, vol. 13, no. 8, pp. 741–745.

Vries de E. Condensation. Patent US no. 4308241, 1981.

Vries de E. Method and Means of Operating Mist Scrubber. Patent US no. 4844874, 1989.

Vries de E. Removal of Odors from Gas Streams. Patent US no. 4238461, 1980.

Vries de E. Two-Stage Odor Control System. Patent US no. 4416861, 1983.

Wei Z., Li Y., Cooks G., Yan X. Accelerated Reaction Kinetics in Microdroplets: Overview and Recent Developments. Annual Review of Physical Chemistry, 2020, vol. 71, pp. 31–51. https://doi.org/10.1146/annurev-physchem-121319-110654

Xiong H., Lee J.K., Zare R.N., Min W. Strong Electric Field Observed at the Interface of Aqueous Microdroplets. The Journal of Physical Chemistry Letters, 2020, vol. 11, iss. 17, pp. 7423–7428. https://doi.org/10.1021/acs.jpclett.0c02061

Published

2024-10-28

How to Cite

Aniskin С., and Kurov В. “The Effect of Intensive Oxidation of Hydrogen Sulfide from Flue Gases of a Soda Recovery Boiler in the Production of Pulp”. Lesnoy Zhurnal (Forestry Journal), no. 5, Oct. 2024, pp. 188-02, doi:10.37482/0536-1036-2024-5-188-202.

Issue

Section

TECHNOLOGY OF WOOD CHEMICAL PROCESSING AND PRODUCTION OF WOOD-POLYMER COMPOSITES