Enzymatic Hydrolysis of Arabinogalactan from Siberian Larch Wood

Authors

DOI:

https://doi.org/10.37482/0536-1036-2025-5-153-168

Keywords:

arabinogalactan, Rhizopus oryzae, β-galactosidase, enzymatic hydrolysis, simple sugars, reducing substances

Abstract

When pulp is obtained from plant raw materials, secondary resources are formed represented by hydrolysates of polysaccharides and lignin, which can act as a substrate in microbiotechnology for the production of bioproducts. Arabinogalactan, which is converted into liquor by the current technology during the production of pulp from larch wood, should also be considered an economically attractive substrate for cultivating microorganisms. A technology for cooking larch wood pulp with pre-extraction of arabinogalactan with hot water has also been developed, making it available as a raw material for microbiology. However, not all microorganisms possess the necessary enzymes to break down this substrate, therefore, in order to increase the bioavailability, arabinogalactan must be subjected to preliminary catalytic, preferably enzymatic, hydrolysis, which is more environmentally friendly compared to chemical hydrolysis. This work is devoted to the investigation of the potential of using the β-galactosidase enzyme complex Rhizopus oryzae F-1030 for the biodegradation of arabinogalactan. The ability of the fungus to metabolize and assimilate arabinogalactan as a sole carbon source has been demonstrated. It has been established that the increase in fungal biomass is directly dependent on the concentration of arabinogalactan in the medium. The selection of rational incubation conditions for extracellular β-galactosidase R. oryzae F-1030 after the removal of fungal biomass from the culture fluid has made it possible to achieve an effective level of arabinogalactan cleavage with enrichment of the medium with reducing substances represented by simple sugars. It has been established that β-galactosidase R. oryzae F-1030 at a temperature of 60 °С, рН 7.0±0.2 and constant stirring exhibits high enzymatic activity at all arabinogalactan concentrations studied. It has been noted that during the first 3 days of incubation, the main increase in the concentration of reducing substances in the culture medium occurs, whereas subsequently, almost no increase in the content of reducing substances is observed due to the depletion of bonds in arabinogalactan molecules available for hydrolysis by the β-galactosidase enzyme, as well as due to the possible interaction of the enzyme with the reaction products. It has been proven that the activity of the β-galactosidase enzyme R. oryzae F-1030 is directly dependent on the concentration of arabinogalactan and the temperature of the culture medium. The results obtained allow us to consider β-galactosidase R. oryzae F-1030 as a promising enzyme for the biomodification of arabinogalactan and for the combined use of both the enzyme and arabinogalactan in the feed industry.

Downloads

Download data is not yet available.

Author Biographies

Aigul R. Galieva, Kazan National Research Technological University

Assistant

Elena V. Kryakunova, Kazan National Research Technological University

Candidate of Biology; ResearcherID: Z-3038-2019

Leysan A. Mingazova, Kazan National Research Technological University

Candidate of Engineering; ResearcherID: AAO-9184-2020

Zosya A. Kanarskaya, Kazan National Research Technological University

Candidate of Engineering, Assoc. Prof.; ResearcherID: AAG-2997-2020

Albert V. Kanarsky, Kazan National Research Technological University

Doctor of Engineering, Prof.; ResearcherID: O-8113-2016

Anton G. Kuznetsov, Saint Petersburg State University of Industrial Technologies and Design

Candidate of Engineering, Assoc. Prof.; ResearcherID: AEX-1353-2022

References

Баранова В.Н., Селиванец Е.И., Боровская Л.В. Влияние внешних факторов на ферментативные реакции // The scientific heritage. 2021. No 79. С. 37–40. Baranova V., Selivanets E., Borovskaya L. Influence of External Factors on Enzymatic Reactions. The Scientific Heritage, 2021, no. 79, pp. 37–40. (In Russ.).

Болтовский В.С. Ферментативный гидролиз растительного сырья: состояние и перспективы // Весці Нацыянальнай акадэміі навук Беларусі. Сер.: Хіміч. навук. 2021. Т. 57, No 4. C. 502–512. Boltovsky V.S. Enzymatic Hydrolysis of Plant Raw Materials: State and Prospects. Vescì Nacyânalʹnaj akadèmìì navuk Belarusì. Seryâ hìmìčnyh navuk = Proceedings of the National Academy of Sciences of Belarus, Chemical Series, 2021, vol. 57, no. 4, pp. 502–512. (In Russ.). https://doi.org/10.29235/1561-8331-2021-57-4-502-512

Бушнева О.А., Оводова Р.Г., Шашков А.С., Чижов А.О., Гюнтер Е.А., Оводов Ю.С. Структурное исследование арабиногалактана и пектина из каллуса Silene vulgaris (M.) G. // Биохимия. 2006. Т. 71, No 6. С. 798–807. Bushneva O.A., Ovodova R.G., Shashkov A.S., Chizhov A.O., Gunter E.A., Ovodov Yu.S. Structural Studies of Arabinogalactan and Pectin from Silene vulgaris (M.) G. callus. Biokhimiya = Biochemistry (Moscow), 2006, vol. 71, no. 6, pp. 644–651. https://doi.org/10.1134/S0006297906060083

Галяутдинова И.А., Канарский А.В., Канарская З.А., Кузнецов А.Г. Эффективность культивирования дрожжей Debaryomyces hansenii и Guehomyces pullulans на питательных средах из арабиногалактана // Вестн. технол. ун-та. 2016. Т. 19, No 16. С. 96–99. Galyautdinova I.A., Kanarskiy A.V., Kanarskaya Z.A., Kuznetsov A.G. Efficiency of Debaryomyces hansenii and Guehomyces pullulans Yeasts Cultivation in Nutrient Media of Arabinogalactan. Vestnik tekhnologicheskogo universiteta = Herald of Technological University, 2016, vol. 19, no. 16, pp. 96–99. (In Russ.).

Гусева Е.Ю., Романцева Ю.Н. Апробирование арабиногалактана в процессе переработки продукции мараловодства // Вестн. КрасГАУ. 2019. No 7. С. 143–146. Guseva E.Yu., Romantseva Yu.N. The Testing of Arabinogalactan in the Course of Deer Farming Products Processing. Vestnik KrasGAU = The Bulletin of KrasGAU, 2019, no. 7, pp. 143–146. (In Russ.).

Кузнецов А.Г., Махотина Л.Г., Аким Э.Л. Использование биополимера арабиногалактана при производстве целлюлозных композиционных материалов // Дизайн. Материалы. Технология. 2012. No 5 (25). С. 82–84. Kuznetsov A.G., Makhotina L.G., Akim E.L. Usage of Biopolimer Arabinogalactan in Production of Cellulose Composites. Dizajn. Materialy. Tekhnologiya = Design. Materials. Technology, 2012, no. 5 (25), pp. 82–84. (In Russ.).

Кулешова М.А., Рудакова В.А. Ферментативный гидролиз отходов переработки дикорастущего плодово-ягодного сырья северных районов европейской части России // Технологии и оборудование химической, биотехнологической и пищевой промышленности: тез. докл. XI Всерос. науч.-практ. конф. Бийск: АлтГТУ, 2018. С. 366–368. Kuleshova M.A., Rudakova V.A. Enzymatic Hydrolysis of Waste from Wild-Growing Fruit and Berry Raw Materials Processing from Northern Regions of the European Part of Russia. Tekhnologii i oborudovanie khimicheskoj, biotekhnologicheskoj i pishchevoj promyshlennosti: Proceedings of the XI All-Russian Scientific and Practical Conference. Biysk, Altai State Technical University Publ., 2018, pp. 366–368. (In Russ.).

Мингазова Л.А., Канарский А.В., Крякунова Е.В., Канарская З.А. Синтез молочной кислоты грибом Rhizopus oryzae F-1030 на питательных средах из сульфитных щелоков // Изв. вузов. Лесн. журн. 2020. No 2. С. 146–158. Mingazova L.A., Kanarsky A.V., Kryakunova E.V., Kanarskaya Z.A. Lactic Acid Synthesis by Fungus Rhizopus oryzae F-1030 on Growth Media Based on Sulphite Liquors. Lesnoy Zhurnal = Russian Forestry Journal, 2020, no. 2, pp. 146–158. (In Russ.). https://doi.org/10.37482/0536-1036-2020-2-146-158

Мингазова Л.А., Крякунова Е.В., Галиева А.Р., Канарская З.А., Канарский А.В., Кручина-Богданов И.В., Белкина Е.В. Влияние способа культивирования гриба Rhizopus orizae F-1030 на гидролизатах нейтрально-сульфитного щелока на эффективность синтеза молочной кислоты // Изв. С.-Петерб. лесотехн. акад. 2024. No 250. С. 405–422. Mingazova L.A., Kryakunova E.V., Galieva A.R., Kanarskaya Z.A., Kanarskii A.V., Kruchina-Bogdanov I.V., Belkina E.V. The Fungus Rhizopus orizae F-1030 Cultivating Mode on Neutral Sulfite Liquor Hydrolysates Affects the Lactic Acid Synthesis Efficiency. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii, 2024, no. 250, pp. 405–422. (In Russ.). https://doi.org/10.21266/2079-4304.2024.250.405-422

Митина Г.В., Сокорнова С.В., Махотина Л.Г., Кузнецов А.Г., Аким Э.Л. Перспективы использования арабиногалактана для культивирования высших грибов и микроорганизмов – продуцентов средств защиты растений // Вестн. защиты растений. 2012. No 3. С. 28–32. Mitina G.V., Sokornova S.V., Mahotina L.G., Kuznetsov A.G., Akim E.L. The Perspectives of Arabinogalaktan for Cultivation Microbiological Control Agents and Mushrooms. Vestnik Zashchity Rasteniy = Plant Protection News, 2012, no. 3, pp. 28–32. (In Russ.).

Митина Г.В., Сокорнова С.В., Титова Ю.А., Махотина Л.Г., Кузнецов А.Г., Первушин А.Л. Использование макро- и микромицетов в биоконверсии растительного сырья // Изв. РГПУ им. А.И. Герцена. 2013. No 163. С. 69–79. Mitina G., Sokornova S., Titova Ju., Mahotina L., Kuznetsov A., Pervushin A. The Usage of Macro- and Micromycetes in the Bioconversion of Wood Raw Material. Izvestiya RGPU im. A.I. Gertsena = Izvestia: Herzen University Journal of Humanities & Sciences, 2013, no. 163, pp. 69–79. (In Russ.).

Морозова Ю.А., Скворцов Е.В., Алимова Ф.К., Канарский А.В. Биосинтез ксиланаз и целлюлаз грибами рода Trichoderma на послеспиртовой барде // Вестн. технол. ун-та. 2012. Т. 15, No 19. С. 120–122. Morozova Yu.A., Skvorсov E.V., Alimova F.K., Kanarskiy A.V. Biosynthesis of Xylanases and Cellulases by Fungi of the Genus Trichoderma on Post-Alcohol Stillage. Vestnik tekhnologicheskogo universiteta = Herald of Technological University, 2012, vol. 15, no. 19, pp. 120–122. (In Russ.).

Никанова Л.А. Использование дигидрокверцетина и арабиногалактана в питании поросят-отъемышей // Вестн. АПК Верхеволжья. 2019. No 3 (47). С. 47–50. Nikanova L.A. The Use of Dihydroquercetin and Arabinogalactan in the Diet of Weaned Piglets. Vestnik APK Verhevolzh’ya = Agroindustrial Complex of Upper Volga Region Herald, 2019, no. 3 (47), pp. 47–50. (In Russ.). https://doi.org/10.35694/YARCX.2019.47.3.010

Першакова Т.В., Хагур Р.Н. Исследование влияния арабиногалактана на качество кондитерских изделий // Науч. журн. КубГАУ. 2012. No 84 (10). Режим доступа: http://ej.kubagro.ru/2012/10/pdf/72.pdf (дата обращения: 21.04.25). Pershakova T.V., Khagur R.N. Investigation of the Influence of Arabinogalaktan on the Quality of Confectionery Products. Nauchnyj zhurnal KubGAU = Scientific Journal of KubSAU, 2012, no. 84 (10), art. no. 0841210072. (In Russ.).

Полыгалина Г.В., Чередниченко В.С., Римарева Л.В. Определение активности ферментов. Справочник. М.: ДеЛи принт, 2003. 375 с. Polygalina G.V., Cherednichenko V.S., Rimareva L.V. Determination of Enzyme Activity. Handbook. Moscow, DeLi print Publ., 2003. 375 p. (In Russ.).

Разработка ветеринарного препарата на основе биологически активных соединений биомассы лиственницы: отчет о НИР / ФГБОУ ВО Иркутский ГАУ; рук-ль Ч.Б. Кушеев. Иркутск, 2018. ГК NoФ.2018.206347. 99 с. Development of a Veterinary Drug Based on Biologically Active Compounds of Larch Biomass: Research Report. Irkutsk State Agrarian University; Research Director Ch.B. Kusheev. Irkutsk, 2018, State Corporation no. F.2018.206347. 99 p. (In Russ.).

Скрипнюк А.А., Рябцева С.А. Современные методы получения β-галактозидаз // Наука. Инновации. Технологии. 2014. No 3. С. 197–204. Skripnyuk A.A., Riabtseva S.A. Modern Methods for Producing β-galactosidase. Nauka. Innovatsii. Tekhnologii = Science. Innovations. Technologies, 2014, no. 3, pp. 197– 204. (In Russ.).

Торшков А.А. Влияние арабиногалактана на продуктивные качества цыплят-бройлеров // Изв. ОГАУ. 2010. No 27-1. С. 203–205. Torshkov A.A. Evaluation of Arabinogalactan on the Productive Qualities of Broiler Chickens. Izvestiya Orenburgskogo Gosudarstvennogo Agrarnogo Universitata = Izvestia Orenburg State Agrarian University, 2010, no. 27-1, pp. 203–205. (In Russ.).

Фомичев Ю.П., Никанова Л.А., Дорожкин В.И., Торшков А.А., Романенко А.А., Еськов Е.К., Семенова А.А., Гоноцкий В.А., Дунаев А.В., Ярошевич Г.С., Лашин С.А., Стольная Н.И. Дигидрокверцетин и арабиногалактан – природные биорегуляторы в жизнедеятельности человека и животных, применение в сельском хозяйстве и пищевой промышленности. М.: Науч. библиотека, 2017. 702 с. Fomichev Yu.P., Nikanova L.A., Dorozhkin V.I., Torshkov A.A., Romanenko A.A., Es’kov E.K., Semenova A.A., Gonotskij V.A., Dunaev A.V., Yaroshevich G.S., Lashin S.A., Stol’naya N.I. Dihydroquercetin and Arabinogalactan – Natural Bioregulators in Human and Animal Life, Application in Agriculture and Food Industry. Moscow, Nauchnaya biblioteka Publ., 2017. 702 p. (In Russ.).

Черникевич И.П. Ферментативный катализ // Журн. ГрГМУ. 2008. No 1. С. 21–27. Chernikevich I.P. Enzymatic Сatalysis. Zhurnal Grodnenskogo Gosudarstvennogo Meditsinskogo Universiteta = Journal of the Grodno State Medical University, 2008, no. 1, pp. 21–27. (In Russ.).

Шариков А.Ю., Иванов В.В., Амелякина М.В. Влияние перемешивания на эффективность ферментативного гидролиза высококонцентрированных сред экструдированного крахмала кукурузы // Вестн. ВГУИТ. 2020. Т. 82, No 3. С. 96–103. Sharikov A.Yu., Ivanov V.V., Amelyakina M.V. Effect of Agitation on the Efficiency of Enzymatic Hydrolysis of Highly Concentrated Media of Extruded Corn Starch. Vestnik VGUIT = Proceedings of VSUET, 2020, vol. 82, no. 3, pp. 96–103. (In Russ.). https://doi.org/10.20914/2310-1202-2020-3-96-103

Advances in Biorefineries. Biomass and Waste Supply Chain Exploitation. Ed. by K. Waldron. Cambridge, Sawston: Woodhead Publ., 2014. 902 p. https://doi.org/10.1016/B978-0-85709-521-3.50033-8

Arabinogalactan Market Analysis by Animal Feed, Pharmaceuticals, Cosmetic and Others through 2035. New York, Future Market Insights Publ., 2025. 250 p.

Cheng J., Wei C., Li W., Wang Y., Wang S., Huang Q., Liu Y., He L. Structural Characteristics and Enhanced Biological Activities of Partially Degraded Arabinogalactan from Larch Sawdust. International Journal of Biological Macromolecules, 2021, vol. 171, pp. 550–559. https://doi.org/10.1016/j.ijbiomac.2021.01.039

Ghosh K., Takahashi D., Kotake T. Plant Type II Arabinogalactan: Structural Features and Modification to Increase Functionality. Carbohydrate Research, 2023, vol. 529, art. no. 108828. https://doi.org/10.1016/j.carres.2023.108828

Ito K., Fukuoka K., Nishigaki N., Hara K., Yoshimi Y., Kuki H., Takahashi D., Tsumuraya Y., Kotake T. Structural Features Conserved in Subclass of Type II Arabinogalactan. Plant Biotechnology, 2020, vol. 37, iss. 4, pp. 459–463. https://doi.org/10.5511/plantbiotechnology.20.0721a

Kalenborn S., Zühlke D., Harder J. Proteomic Insight into Arabinogalactan Utilization by Particle-Associated Maribacter sp. MAR_2009_72. FEMS Microbiology Ecology, 2024, vol. 100, iss. 5, art. no. fiae045. https://doi.org/10.1093/femsec/fiae045

Leszczuk A., Kalaitzis P., Zdunek A. Review: Structure and Modifications of Arabinogalactan Proteins (AGPs). BMC Plant Biology, 2023, vol. 23, art. no. 45. https://doi.org/10.1186/s12870-023-04066-5

Li N., Yang F., Su J., Shi S., Ordaz-Ortiz J.J., Cheng X., Xiong S., Xu Y., Wu J., Wang H., Wang S. Structure Characterization of an Arabinogalactan from Cynanchum atratum and its Immune Stimulatory Activity on RAW264.7 Cells. International Journal of Biological Macromoleclules, 2022, vol. 194, pp. 163–171. https://doi.org/10.1016/j.ijbiomac.2021.11.172

Liu Z., Zhao C., Deng Y., Huang Y., Liu B. Characterization of a Thermostable Recombinant β-Galactosidase from a Thermophilic Anaerobic Bacterial Consortium YTY-70. Biotechnology & Biotechnological Equipment, 2015, vol. 29, iss. 3, pp. 547–554. https://dx.doi.org/10.1080/13102818.2015.1015244

Malyar Yu.N., Borovkova V.S., Kazachenko A.S., Fetisova O.Yu., Skripnikov A.M., Sychev V.V., Taran O.P. Preparation and Characterization of Di- and Tricarboxylic Acids-Modified Arabinogalactan Plasticized Composite Films. Polymers, 2023, vol. 15, no. 9, art. no. 1999. https://doi.org/10.3390/polym15091999

Pokatilov F.A., Akamova H.V., Kizhnyaev V.N. Synthesis and Properties of Tetrazole-Containing Polyelectrolytes Based on Chitosan, Starch, and Arabinogalactan. E-Polymers, 2022, vol. 22, iss. 1, pp. 203–213. https://doi.org/10.1515/epoly-2022-0026

Qi H., Tang S., Bian B., Lai C., Chen Y., Ling Z., Yong Q. Effect of H₂O₂-VC Degradation on Structural Characteristics and Immunomodulatory Activity of Larch Arabinogalactan. Frontiers in Bioengineering and Biotechnology, 2024, vol. 12, art. no. 1461343. https://doi.org/10.3389/fbioe.2024.1461343

Ruiz-Ramírez S., Jiménez-Flores R. Invited Review: Properties of β-Galactosidases Derived from Lactobacillaceae Species and Their Capacity for Galacto-Oligosaccharide Production. Journal of Dairy Science, 2023, vol. 106, iss. 12, pp. 8193–8206. https://doi.org/10.3168/jds.2023-23392

Saito K., Hasa Y., Abe H. Production of Lactic Acid from Xylose and Wheat Straw by Rhizopus oryzae. Journal of Bioscience and Bioengineering, 2012, vol. 114, pp. 166–169. https://doi.org/10.1016/j.jbiosc.2012.03.007

Sasaki Y., Yanagita M., Hashiguchi M., Horigome A., Xiao J.-Z., Odamaki T., Kitahara K., Fujita K. Assimilation of Arabinogalactan Side Chains with Novel 3-O-β-L-Arabinopyranosyl-α-L-Arabinofuranosidase in Bifidobacterium pseudocatenulatum. Microbiome Research Reports, 2023, vol. 2, art. no. 12. https://doi.org/10.20517/mrr.2023.08

Srivastava N., Rathour R., Jha S., Pandey K., Srivastava M., Thakur V.K., Sengar R.S., Gupta V.K., Mazumder P.B., Khan A.F., Mishra P.K. Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application. Biomolecules, 2019, vol. 9, no. 6, art. no. 220. https://doi.org/10.3390/biom9060220

Tang S., Jiang M., Huang C., Lai C., Fan Y., Yong Q. Characterization of Arabinogalactans from Larix principis-rupprechtii and Their Effects on NO Production by Macrophages. Carbohydrate Polymers, 2018, vol. 200, pp. 408–415. https://doi.org/10.1016/j.carbpol.2018.08.027

Volford B., Varga M., Szekeres A., Kotogán A., Nagy G., Vágvölgyi C., Papp T., Takó M. β-Galactosidase-Producing Isolates in Mucoromycota: Screening, Enzyme Production, and Applications for Functional Oligosaccharide Synthesis. Journal of Fungi, 2021, vol. 7, no. 3, art. no. 229. https://doi.org/10.3390/jof7030229

Zvereva M.V., Zhmurova A.V. Synthesis, Structure, and Spectral Properties of ZnTe-Containing Nanocomposites Based on Arabinogalactan. Russian Journal of General Chemistry, 2022, vol. 92, pp. 1995–2004. https://doi.org/10.1134/S1070363222100139

Published

2025-10-28

How to Cite

Galieva А., Kryakunova Е., Mingazova Л., Kanarskaya З., Kanarsky А., and Kuznetsov А. “Enzymatic Hydrolysis of Arabinogalactan from Siberian Larch Wood”. Lesnoy Zhurnal (Forestry Journal), no. 5, Oct. 2025, pp. 153-68, doi:10.37482/0536-1036-2025-5-153-168.

Issue

Section

TECHNOLOGY OF WOOD CHEMICAL PROCESSING AND PRODUCTION OF WOOD-POLYMER COMPOSITES

Most read articles by the same author(s)