Dynamics of the Photosynthetic Pigment Complex of Scots Pine in Relation to Climatic Factors in the European North
DOI:
https://doi.org/10.37482/0536-1036-2026-1-64-77Keywords:
Pinus sylvestris L., dynamics of photosynthetic pigments, climatic factors, temperature, amount of precipitation, excessive moisteningAbstract
Among tree species, conifers, in particular Scots pine (Pinus sylvestris L.) have a higher sensitivity to climate change. The aim of the work has been to assess the dynamics of photosynthetic pigments in connection with changes in climatic factors under conditions of constant excessive moistening in the soils of the northern taiga. The research has been conducted in dwarf shrub-shpagnum pine forests on bog peat soils at the mouth of the Northern Dvina River. In the period from 1998 to 2019, samples of 1-year-old needles have been collected from 20–50 pine trees in permanent sample plots, and the chlorophyll and carotenoid content has been determined using the photometric method. A study of the seasonal dynamics of the photosynthetic pigment complex of pine needles conducted in 2013–2016 has shown that the content of green pigments begins to decrease significantly only with the onset of frost in November. The positive temperature in September and October promotes the synthesis of chlorophylls, which can negatively affect the process of hardening trees before overwintering. In the autumn-winter period, there is an active accumulation of carotenoids in the needles, which should be considered as an adaptive response aimed at developing the resistance of the pine photosynthetic apparatus to changing environmental conditions. In May–June 1998– 2019, a similarity has been found in the dynamics of the average monthly air temperature and the content of chlorophyll a and carotenoids in the needles. During this period, a positive correlation has been observed between the concentration of chlorophyll a and the air temperature. Thus, at the beginning and during the active growing season in the northern taiga, positive temperatures have a stimulating effect on the formation of the photosynthetic apparatus of pine needles. In conditions of excessive moistening over a 20-year period, the amount of precipitation has not had a significant effect on the content of photosynthetic pigments in pine needles.
Acknowledgements: The study was carried out within the framework of the state assignment for the N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences (project no. FUUW-2025-0003, no. GR 125021902596-8).
Downloads
References
Веретенников А.В. Влияние временного избыточного увлажнения на физиологические процессы древесных растений. М.: Наука, 1964. 87 с. Veretennikov A.V. The Effect of Temporary Excess Moisture on the Physiological Processes of Woody Plants. Moscow, Nauka Publ., 1964. 87 p. (In Russ.).
Веретенников А.В. Метаболизм древесных растений в условиях корневой аноксии. Воронеж: Воронежский ун-т, 1985. 152 с. Veretennikov A.V. Metabolism of Woody Plants under Conditions of Root Anoxia. Voronezh, Voronezh University Publ., 1985. 152 p. (In Russ.).
Второй оценочный доклад Росгидромета об изменениях климата и их последствиях на территории Российской Федерации. М.: Росгидромет, 2014. 59 с. The Second Assessment Report of the Russian Hydrometeorological Service on Climate Change and its Impacts on the Territory of the Russian Federation. Moscow, Rosgidromet Publ., 2014. 59 p. (In Russ.).
Гисметео. Режим доступа: http://gismeteo.ru/diary/3915/ (дата обращения: 31.10.22). Gismeteo. Available at: http://gismeteo.ru/diary/3915/ (accessed 31.10.22). (In Russ.).
Грищенко И.В. Климат Архангельской области. Архангельск: Типография А4, 2017. 203 с. Grishchenko I.V. Climate of the Arkhangelsk Region. Arkhangelsk, A4 Print. House, 2017. 203 p. (In Russ.).
Доклад об особенностях климата на территории Российской Федерации за 2021 год. Федеральная служба по гидрометеорологии и мониторингу окружающей среды (Росгидромет). М., 2022. 110 с. Report on Climate Characteristics in the Territory of the Russian Federation for 2021. Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet). Moscow, 2022. 110 p. (In Russ.).
Есичев А.О. Корреляция признаков пигментного состава хвои представителей рода лиственница (Larix Mill.) в дендропарке Сергачского лесничества Нижегородской области // Изв. вузов. Лесн. журн. 2018. No 3. С. 43–53. Esichev A.O. Correlation of Characteristics of the Needle Pigment Combination of Representatives of the Genus Larch (Larix Mill.) in the Arboretum of the Sergachsky Forestry in the Nizhny Novgorod Region. Lesnoy Zhurnal = Russian Forestry Journal, 2018, no. 3, pp. 43–53. (In Russ.). https://doi.org/10.17238/issn0536-1036.2018.3.43
Замолодчиков Д.Г., Краев Г.Н. Влияние изменений климата на леса России: зафиксированные воздействия и прогнозные оценки // Устойчивое лесопользование. 2016. No 4 (48). С. 23–31. Zamolodchikov D.G., Kraev G.N. The Impact of Climate Change on Russian Forests: Recorded Impacts and Projected Estimates. Ustojchivoye lesopol’zovanie, 2016, no. 4 (48), pp. 23–31. (In Russ.).
Маслова Т.Г., Мамушина Н.С., Шерстнева О.А., Буболо Л.С., Зубкова Е.К. Структурно-функциональные изменения фотосинтетического аппарата у зимневегетирующих хвойных растений в различные сезоны года // Физиология растений. 2009. Т. 56, No 5. С. 672–681. Maslova T.G., Mamushina N.S., Sherstneva O.A., Bubolo L.S., Zubkova E.K. Seasonal Structural and Functional Changes in the Photosynthetic Apparatus of Evergreen Conifers. Fiziologiya rastenii = Russian Journal of Plant Physiology, 2009, vol. 56, pp. 607– 615. https://doi.org/10.1134/S1021443709050045
Мохов И.И., Елисеев А.В., Демченко П.Ф., Хон В.Ч., Акперов М.Г., Аржанов М.М., Карпенко А.А., Тихонов B.А., Чернокулъский А.В., Сигаева Е.В. Климатические изменения и их оценки с использованием глобальной модели ИФА РАН // Докл. Рос. акад. наук. 2005. Т. 402, No 2. С. 243–247. Mokhov I.I., Eliseev A.V., Demchenko P.F., Khon V.Ch., Akperov M.G., Arzhanov M.M., Karpenko A.A., Tikhonov B.A., Chernokul’skij A.V., Sigaeva E.V. Climate Change and its Assessments Using the Global Model of the Institute of Atmospheric Physics of the Russian Academy of Sciences. Doklady Rossijskoj akademii nauk, 2005, vol. 402, no. 2, pp. 243–247. (In Russ.).
Практикум по физиологии растений / под ред. Н.Н. Третьякова, Т.В. Карнауховой, Л.А. Паничкина и др. 3-е изд., перераб. и доп. М.: Агропромиздат, 1990. 271 с. Tutorial in Plant Physiology. Ed. by N.N. Tretyakov, T.V. Karnaukhova, L.A. Panichkin et al. 3rd ed., revised and enlarged. Moscow, Agropromizdat Publ., 1990. 271 p. (In Russ.).
Тужилкина В.В. Пигментный комплекс хвои сосны в лесах Европейского северо-востока // Лесоведение. 2012. No 4. С. 16–23. Tuzhilkina V.V. Pigment Complex of Pine in Phytocenoses of the European NorthEast. Lesovedenie = Russian Journal of Forest Science, 2012, no. 4, pp. 16–23. (In Russ.).
Федеральная служба по гидрометеорологии и мониторингу окружающей среды. Северо-Евразийский Климатический центр. Режим доступа: http://seakc.meteoinfo.ru/ (дата обращения: 31.10.22). Federal Service for Hydrometeorology and Environmental Monitoring. North Eurasia Climate Centre. (In Russ.).
Яцко Я.Н., Дымова О.В., Головко Т.К. Пигментный комплекс зимне- и вечнозеленых растений в подзоне средней тайги европейского Северо-Востока // Ботанич. журн. 2009. Т. 94, No 12. С. 1812–1820. Yatsko Ya.N., Dymova O.V., Golovko T.K. Pigment Complex of Winter and Evergreen Plants in the Middle Taiga Subzone of the European North-East. Botanicheskij zhurnal, 2009, vol. 94, no. 12, pp. 1812–1820. (In Russ.).
Beaulieu J., Rainville A. Adaptation to Climate Change: Genetic Variation is Both a Short- and a Long-Term Solution. The Forestry Chronicle, 2005, vol. 81, no. 5, pp. 704– 709. https://doi.org/10.5558/tfc81704-5
Björkman O. Responses to Different Quantum Flux Densities. Physiological Рlant Еcology I. Encyclopedia of Plant Physiology. Berlin, Heidelberg, Springer Publ., 1981, vol. 12, pp. 57–107. https://doi.org/10.1007/978-3-642-68090-8_4
Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Ed. by R.K. Pachauri, L.A. Meyer. Switzerland, Geneva, IPCC, 2014. 151 p.
Demmig-Adams B., Adams III W.W. Photoprotection in an Ecological Context: The Remarkable Complexity of Thermal Energy Dissipation. New Phytologist, 2006, vol. 172, iss. 1, pp. 11–21. https://doi.org/10.1111/j.1469-8137.2006.01835.x
Dyderski M.K., Paź S., Frelich L.E., Jagodziński A.M. How Much Does Climate Change Threaten European Forest Tree Species Distributions? Global Change Biology, 2018, vol. 24, iss. 3, pp. 1150–1163. https://doi.org/10.1111/gcb.13925
Huang J.-G., Bergeron Y., Berninger F., Zhai L., Tardif J.C., Denneler B. Impact of Future Climate on Radial Growth of Four Major Boreal Tree Species in the Eastern Canadian Boreal Forest. PLoS One, 2013, vol. 8, iss. 2, art. no. e56758. https://doi.org/10.1371/journal.pone.0056758
Ivanov L.A., Ivanova L.A., Ronzhina D.A., Yudina P.K. Changes in the Chlorophyll and Carotenoid Contents in the Leaves of Steppe Plants along a Latitudinal Gradient in South Ural. Russian Journal of Plant Physiology, 2013, vol. 60, pp. 812–820. https://doi.org/10.1134/S1021443713050075
Kapeller S., Lexer M.J., Geburek T., Hiebl J., Schueler S. Intraspecific Variation in Climate Response of Norway Spruce in the Eastern Alpine Range: Selecting Appropriate Provenances for Future Climate. Forest Ecology and Management, 2012, vol. 271, pp. 46–57. https://doi.org/10.1016/j.foreco.2012.01.039
Öquist G., Huner N.P.A. Photosynthesis of Overwintering Evergreen Plants. Annual Review of Plant Biology, 2003, vol. 54, pp. 329–355. https://doi.org/10.1146/annurev.arplant.54.072402.115741
Rehfeldt G.E., Tchebakova N.M., Milyutin L.I., Parfenova E.I., Wykoff W.R., Kouzmina N.A. Assessing Population Responses to Climate in Pinus sylvestris and Larix spp. of Eurasia with Climate-Transfer Models. Eurasian Journal of Forest Research, 2003, vol. 6, iss. 2, pp. 83–98.
Rehfeldt G.E., Tchebakova N.M., Parfenova Ye.I., Wykoff W.R., Kuzmina N.A., Milyutin L.I. Intraspecific Responses to Climate in Pinus sylvestris. Global Change Biology, 2002, vol. 8, iss. 9, pp. 912–929. https://doi.org/10.1046/j.1365-2486.2002.00516.x
Savolainen O., Bokma F., García-Gil R., Komulainen P., Repo T. Genetic Variation in Cessation of Growth and Frost Hardiness and Consequences for Adaptation of Pinus sylvestris to Climatic Changes. Forest Ecology and Management, 2004, vol. 197, iss. 1–3, pp. 79–89. https://doi.org/10.1016/j.foreco.2004.05.006
Tarkhanov S.N., Pinaevskaya E.A., Aganina Y.E. Adaptive Responses of Morphological Forms of the Pine (Pinus sylvestris L.) under Stressful Conditions of the Northern Taiga (in the Northern Dvina Basin). Contemporary Problems of Ecology, 2018, vol. 11, pp. 377–387. https://doi.org/10.1134/S1995425518040091
Vejpustková M., Cihák T. Climate Response of Douglas Fir Reveals Recently Increased Sensitivity to Drought Stress in Central Europe. Forests, 2019, vol. 10, no. 2, art. no. 97. https://doi.org/10.3390/f10020097
Villeneuve I., Lamhamedi M.S., Benomar L., Rainville A., DeBlois J., Beaulieu J., Bousquet J., Lambert M-C., Margolis H. Morpho-Physiological Variation of White Spruce Seedlings from Various Seed Sources and Implications for Deployment under Climate Change. Frontiers in Plant Science, 2016, vol. 7, art. no. 1450. https://doi.org/10.3389/fpls.2016.01450
Yudina P.K., Ivanova L.A., Ronzhina D.A., Zolotareva N.V., Ivanov L.A. Variation of Leaf Traits and Pigment Content in Three Species of Steppe Plants Depending on the Climate Aridity. Russian Journal of Plant Physiology, 2017, vol. 64, pp. 410–422. https://doi.org/10.1134/S1021443717020145
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Tarkhanov S.N., Prozherina N.A., Pinaevskaya E.A., Aganina Yu.E.

This work is licensed under a Creative Commons Attribution 4.0 International License.





