Features of Annual Pinus sylvsetris L. Shoot Increment in an Urbanized Environment
DOI:
https://doi.org/10.37482/0536-1036-2026-1-121-133Keywords:
annual shoot increment, Scots pine, hydrothermal regime, climatic diagram, synchronicity coefficient according to S.G. Shiyatov, moving average method, correlation coefficient, OmskAbstract
The aim of the research has been to study the features of the annual increment of shoots of Scots pine (Pinus sylvestris L.) trees depending on the hydrothermal regime of the air environment in the conditions of the city of Omsk. The subject of the study has been the analysis of shoot growth during the growing season. The nature of the hydrothermal regime is considered by constructing climatic diagrams according to Gossen–Walter based on data from the agrometeorological bulletins of the Omsk hydrometeorological centre from 1960 to the present day for May. The features of the dynamics of annual shoot increment in Scots pine trees have been studied at 3 different sites in the city of Omsk. The characteristics of the considered areas of pine crops have been presented, and the patterns of annual increment of shoots of model trees have been described. An analysis of the synchronicity of annual increment of model trees according to S.G. Shiyatov has been carried out. As a result of the correlation analysis using the moving average method, a moderate relationship has been found between the annual increment and the air temperature for May–June in all areas; a moderate relationship with the amount of precipitation for May and May–June has been obtained only for one area. According to climatic diagrams, over the past 30 years, the frequency of wet periods in May has increased, while their duration has decreased. In addition, very low correlation coefficients have been established between the annual increment of pine trees and temperatures and precipitation over the studied months of the growing season, which confirms the absence of linear relationship between them. The research materials can be useful in organizing work on the care of Scots pine plantations and developing theoretical foundations for the production of pine crops in urban conditions.
Downloads
References
Афонин А.А. Динамика развития побегов ивы трехтычинковой при разном атмосферном увлажнении // Лесоведение. 2023. No 1. С. 44–51. Afonin A.A. Development Dynamics of the Almond Willow’s Shoots on Different Levels Atmospheric Moisture. Lesovedenie, 2023, no. 1, pp. 44–51. (In Russ.). https://doi.org/10.31857/S0024114823010023
Бабарыкина И.В. Сезонный рост хвойных растений в условиях Дендропарка ОмГАУ (г. Омск) // Естественные науки и экология. Ежегодник. Вып. 10: межвуз. сб. науч. тр. Омск: ОмГПУ, 2006. С. 46–49. Babarykina I.V. Seasonal Growth of Coniferous Plants in the Conditions of the Omsk State Agrarian University Arboretum (Omsk). Natural Sciences and Ecology: Yearbook. Iss. 10: Interuniversity Collection of Scientific Papers. Omsk, Omsk State Pedagogical University Publ., 2006, pp. 46–49. (In Russ.).
Гортинский Г.Б. Модификация климадиаграмм по Госсену-Вальтеру для решения оперативных экологических задач // Экология и защита леса. Лесные экосистемы и их защита. Л.: ЛТА, 1984. С. 142–146. Gortinskij G.B. Modification of Gossen-Walter Climatic Diagrams for Solving Operational Environmental Problems. Ekologiya i zashchita lesa. Lesnye ekosistemy i ikh zashchita. Leningrad, Forest Technology Academy Publ., 1984, pp. 142–146. (In Russ.).
Григорьев А.И. Закономерности адаптации древесных растений в лесостепи Западной Сибири: дис. ... д-ра биол. наук. Омск, 2000. 392 с. Grigor’ev A.I. Patterns of Adaptation of Woody Plants in the Forest-Steppe of Western Siberia: Doc. Biol. Sci. Diss. Omsk, 2000. 392 p. (In Russ.).
Григорьев А.И. Эколого-физиологические основы адаптации древесных растений в лесостепи Западной Сибири: моногр. Омск: ОмГПУ, 2008. 196 с. Grigor’ev A.I. Ecological and Physiological Foundations of Adaptation of Woody Plants in the Forest-Steppe of Western Siberia: Monograph. Omsk, Omsk State Pedagogical University Publ., 2008. 196 p. (In Russ.).
Кладько Ю.В., Бенькова А.В., Скрипальщикова Л.Н. Влияние климатических факторов на радиальный рост сосны обыкновенной в условиях техногенного загрязнения г. Красноярска // Сиб. лесн. журн. 2023. No 5. С. 91–99. Klad’ko Yu.V., Ben’kova A.V., Skripal’shchikova L.N. Influence of Climatic Factors on Radial Growth of Scots Pine under the Conditions of Technogenic Pollution in the City of Krasnoyarsk. Sibirskij lesnoj zhurnal = Siberian Journal of Forest Science, 2023, no. 5, pp. 91–99. (In Russ.). https://doi.org/10.15372/SJFS20230512
Лисеев А.С. Влияние климатических факторов на прирост сосны в Бузулукском бору // Исследования по лесной таксации и лесоустройству. М., 1968. С. 200–208. Liseev A.S. The Influence of Climatic Factors on Pine Growth in the Buzuluk Pine Forest. Issledovaniya po lesnoj taksatsii i lesoustrojstvu. Moscow, 1968, pp. 200–208. (In Russ.).
Раскатов П.Б. Прирост годичных побегов сосны как показатель засухи // Докл. АН СССР. 1948. Т. 60, No 7. С. 1257–1259. Raskatov P.B. The Increment of Annual Pine Shoots as an Indicator of Drought. Doklady Akademii nauk SSSR, 1948, vol. 60, no. 7, pp. 1257–1259. (In Russ.).
Тихонова И.В., Корец М.А. Изменчивость метеорологических условий произрастания хвойных пород в Средней Сибири с 1960 г. // Лесоведение. 2021. No 2. С. 173–186. Tikhonova I.V., Korets M.A. A Variability of Meteorological Conditions for the Growth of Coniferous Species in Central Siberia since 1960. Lesovedenie, 2021, no. 2, pp. 173–186. (In Russ.). https://doi.org/10.31857/S002411482102008X
Тольский А.П. К вопросу о выявлении колебаний климата по анализам хода роста деревьев // Тр. по с.-х. метеорологии. Вып. XXIV. Л.: ЦУЕГМЕ, 1936. С. 117–123. Tol’skij A.P. On the Issue of Identifying Climate Fluctuations by Analyzing the Growth of Trees. Trudy po sel’skokhozyajstvennoj meteorologii. Leningrad, Central Administration of the Unified Hydro-Meteorological Network, 1936, pp. 117–123. (In Russ.).
Шиятов С.Г. Дендрохронология верхней границы леса на Урале. М.: Наука, 1986. 137 с. Shiyatov S.G. Dendrochronology of the Upper Forest Limit in the Urals. Moscow, Nauka Publ., 1986. 137 p. (In Russ.).
Allen C.D., Macalady A.K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., Kitzberger T., Rigling A., Breshears D.D., Hogg E.H. (T.), Gonzalez P., Fensham R., Zhang Z., Castro J., Demidova N., Lim J-H., Allard G., Running S.W., Semerci A., Cobb N. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. Forest Ecology and Management, 2010, vol. 259, iss. 4, pp. 660–684. https://doi.org/10.1016/j.foreco.2009.09.001
Berlin M.E., Persson T., Jansson G., Haapanen M., Ruotsalainen S., Bärring L., Andersson G.B. Scots pine transfer effect models for growth and survival in Sweden and Finland. Silva Fennica, 2016, vol. 50, no. 3, art. no. 1562. https://doi.org/10.14214/sf.1562
Davin E.L., Noublet-Ducoudre de N. Climatic Impact of Global-Scale Deforestation: Radiative versus Nonradiative Processes. Journal of Climate, 2010, vol. 23, iss. 1, pp. 97–112. https://doi.org/10.1175/2009JCLI3102.1
Harris I., Jones P.D., Osborn T.J., Lister D.H. Updated High-Resolution Grids of Monthly Climatic Observations – the CRU TS3.10 Dataset. International Journal of Climatology, 2014, vol. 34, iss. 3, pp. 623–642. https://doi.org/10.1002/joc.3711
He Y., Huang J., Shugart H.H., Guan X., Wang B., Yu K. Unexpected Evergreen Expansion in the Siberian Forest under Warming Hiatus. Journal of Climate, 2017, vol. 30, iss. 13, pp. 5021–5039. https://doi.org/10.1175/JCLI-D-16-0196.1
Hellmann L., Agafonov L., Ljungqvist F.C., Churakova (Sidorova) O., Düthorn E., Esper J., Hülsmann L., Kirdyanov A.V., Moiseev P., Myglan V.S. Diverse Growth Trends and Climate Responses across Eurasia’s Boreal Forest. Environmental Research Letters, 2016, vol. 11, art. no. 074021. https://doi.org/10.1088/1748-9326/11/7/074021
Kirdyanov А.V., Hagedorn F., Knorre A.A., Fedotova E.V., Vaganov E.A., Naurzbaev M.M., Moiseev P.A., Rigling A. 20th Century Tree-Line Advance and Vegetation Changes along an Altitudinal Transect in the Putorana Mountains, Northern Siberia. Boreas, 2012, vol. 41, iss. 1, pp. 56–67. https://doi.org/10.1111/j.1502-3885.2011.00214.x
Martínez-Vilalta J., Lopez B.C., Adell N., Badiella L., Ninyerola M. Twentieth Century Increase of Scots Pine Radial Growth in NE Spain Shows Strong Climate Interactions. Global Change Biology, 2008, vol. 14, iss. 12, pp. 2868–2881. https://doi.org/10.1111/j.1365-2486.2008.01685.x
Mitchell T.D., Jones P.D. An Improved Method of Constructing a Database of Monthly Climate Observations and Associated High-Resolution Grids. International Journal of Climatology, 2005, vol. 25, iss. 6, pp. 693–712. https://doi.org/10.1002/joc.1181
Rehfeldt G.E., Tchebakova N.M., Parfenova Y.I., Kuzmina N.A., Milyutin L.I. Intraspecific Responses to Climate in Pinus sylvestris. Global Change Biology, 2002, vol. 8, iss. 9, pp. 912–929. https://doi.org/10.1046/j.1365-2486.2002.00516.x
Tchebakova N.M., Parfenova E.I., Korets M.A., Conard S.G. Potential Change in Forest Types and Stand Heights in Central Siberia in a Warming Climate. Environmental Research Letters, 2016, vol. 11, no. 3, art. no. 035016. https://doi.org/10.1088/1748-9326/11/3/035016
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Zheltikova E.V., Grigor’ev A.I.

This work is licensed under a Creative Commons Attribution 4.0 International License.





