Performance Assessment of the Drying Section of Ma-chines for the Production of Tissue Paper Grades

Authors

  • Д. А. Прохоров Saint-Petersburg State University of Industrial Technologies and Design https://orcid.org/0000-0001-5206-4119
  • А. С. Смолин Saint-Petersburg State University of Industrial Technologies and Design

DOI:

https://doi.org/10.37482/0536-1036-2020-2-159-168

Keywords:

paper machine, tissue paper grades, tissue, drying section, Yankee hood, energy consumption, cross-direction moisture profile, machine productivity

Abstract

The paper presents the method for assessment the performance of high-speed Yankee hoods in the production of tissue paper grades and the results of its use in working machine. The following parameters are found applying this method: paper web dryness, air pressure in the wet and dry ends of high-speed convective dryers and temperature of the air spilled out of the hoods. The methodology is based on the measurement of these characteristics during the operation of working equipment with further adjustment of the separate system units. Thermal imaging was carried out during the experiment. It has been found that blowing hot air on the front side of the hood and sucking in the cold air on the drive side leads to uneven moisture profile (measured on the paper machine roll) across the paper web width, a decrease in energy efficiency and the machine capacity. Performance indicator may be,
for instance, the spilled air temperature, which on the studied machine is significantly different from the standard value and is 175 °C. The rationality of regular monitoring of air characteristics when changing processing modes is proved. The relevance of the cascade system is substantiated, where not only a direct cascade from the dry end to the wet end is possible, but also there is an opportunity to adjust the humidity of exhaust air by addition/reduction of part of it to/from the dry end. The direct effect of adjusting the humidity of exhaust air in the drying section on reduction of energy costs, as well as the effect of make-up air on the amount of infiltration and the air balance of the system are confirmed. A set of  measures  implemented  within  the  framework  of  this  methodology  makes  it  possible to  achieve  energy  saving  in  existing  industries. The  prospective  saving  potential  of  gas is  62  m3/h  or  17  %  of  the  current  consumption  and  actual  electricity  consumption  is 6.8 kWh or 4 % for the studied machine.

For citation: Prokhorov D.A., Smolin A.S. Performance Assessment of the Drying Section of Machines for the Production of Tissue Paper Grades. Lesnoy Zhurnal[Russian Forestry Journal], 2020, no. 2, pp. 159–168. DOI: 10.37482/0536-1036-2020-2-159-168

Downloads

Download data is not yet available.

Author Biographies

Д. А. Прохоров, Saint-Petersburg State University of Industrial Technologies and Design

Postgraduate Student

А. С. Смолин, Saint-Petersburg State University of Industrial Technologies and Design

Doctor of Engineering, Prof.

References

Бельский А.П., Лотвинов М.Д. Вентиляция бумагоделательных машин. М.: лесн. пром-сть, 1990. 216 с. [Belʼskiy A.P., Lotvinov M.D. Ventilation of Paper Machines. Moscow, Lesnaya promyshlennostʼ Publ., 1990. 216 p.].

Бойков Л.М. Совершенствование процессов контактно-конвективной сушки картона и бумаги: дис. ... д-ра техн. наук. CПб., 2001. 422 с. [Boykov L.M. Improving the Processes of Contact-Convective Drying of Cardboard and Paper: Dr. Eng. Sci. Diss. Saint Petersburg, 2001. 422 p.].

Бойков Л.М. Повышение эффективности сушки путем модернизации пароконденсатных систем бумагоделательных, картоноделательных машин и гофроагрегатов. СПб.: СПбГТУРП, 2014. 511 с. [Boykov L.M. Improving the Drying Efficiency of Paper and Board Machines, and Corrugators. Saint Petersburg, SPbSTUPP Publ., 2015. 534 p.].

Бойков Л.М., Прохоров Д.А., Ионин Е.Н.Модернизация систем вентиляции на предприятиях ЦБП // Целлюлоза. Бумага. Картон. 2015. № 10. с. 60–64. [Boykov L.М., Prokhorov D.A., Ionin E.N. Upgrade of Ventilation Systems at the Pulp and Paper Mills. Tsellyulosa. Bumaga, Karton[Pulp. Paper. Board], 2015, no. 10, pp. 60–64].

Лакомкин В.Ю., Бельский А.П. Тепломассообменное оборудование предприятий (сушильные установки). СПб.: СПбГТУРП, 2006. 100 с. [Lakomkin V.Yu., Belʼskiy A.P. Heat and Mass Exchangers of Mills (Drying Systems). Saint Petersburg, SPbSTUPP Publ., 2006. 100 p.].

Свидетельство № 2016615260 Российская Федерация. Программа расчета кинетики сушки кровельного картона в периоде прогрева: № 2016612521/69: заявл. 22.03.2016, опубл. 19.05.2016, Реестр программ для ЭвМ / Д.А. Прохоров. [Prokhorov D.A. Program for Calculating the Drying Kinetics of the Roofing Paperboard in Warm-up Phase. Certificate RF, no. 2016615260, 2016.].

Свидетельство № 2017615668 Российская Федерация. Программа расчета рекуперативных воздухоподогревателей № 2017612493: заявл. 24.03.2017, опубл. 19.05.2017, Реестр программ для ЭВМ / Д.А. Прохоров, Е.Н. Ионин, Т.А. Антоненко, В.Н. Белоусов. [Prokhorov D.A., Ionin E.N., Antonenko T.A., Belousov V.N. Program for Calculating Recuperative Airheaters. Certificate RF, no. 2017615668, 2017.].

Смолин А.С., Пяткова И.А.Перспективные направления развития тиссью продукции // технология и оборудование в производстве санитарно-гигиенических мате-риалов. СПб.: МНПК, 2010. с. 20–22. [Smolin A.S., Pyatkova I.A. Promissing Directions for Tissue Production Development. Technology and Equipment in the Production of Tissue Materials. Saint Petersburg, MNPK Publ., 2010, pp. 20–22].

Berardi R., Scherb T. Tissue Goes High-Speed. Twogether, 2012, no. 33, pp. 30–31.10. Blechschmidt J. Taschenbuch der Papiertechnik. München, Carl Hanser Verlag, 2013. 650 S.

Boykov L.M., Prokhorov D.A., Ionin E.N., Lukianov S.A. Modernization of Steam and Condensate Systems of Drying Plants of Paper and Cardboard-Making Machines. Materials of the 102nd International Scientific-Practical Conference “The Technical Progress of Humanity in the Context of the Continued Expansion of the Material Needs of Society”. London, 2015, pp. 77–84.

Engelking P.D. Thermodynamik. Friedrichshafen, Germany, 2016. 134 p. 13. Fisher Tissue Databank 2018. Fisher International, 2019. 78 p.

Fleschhut E. Development of a Technical Design Tool for Tissue Machines. Bachelor Thesis. Ravensburg, 2018. 72 p.

Greenleaf C. Where Will the Tissue Market Be in 2025? Fisher International, Inc., 2017. Available at: https://www.fisheri.com/images/features/insights/Fisher_Analysis_Tissue_by_2025.pdf(accessed 15.07.19).

Kilby E. CEPI Annual Statistics 2016. 2017. 95 p.

Miller T., Kramer C., Fisher A. Brandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing. U.S. Department of Energy, 2015. 94 p.

Perryʼs Chemical Engineerʼs Handbook. Ed. by D.W. Green, R.H. Perry. New York, McGraw-Hill, 2008. 2700 p.

Poling B.E., Prausnitz J.M., OʼConnell J.P. The Estimation of Physical Properties. Ch. 1. Properties of Gases and Liquids. New York, McGraw-Hill, 2001. 721 p.

Sarli A. Energy Optimization Package for Yankee Hoods. Ravensburg, Voith Paper Air Systems, 2012. 4 p.

Transport Phenomena and Drying of Solids and Particulate Materials. Ed. by J.M.P.Q. Delegao, A.G. Barbosa de Lima. Basel, Switzerland, Springer, 2014. 204 p. DOI: 10.1007/978-3-319-04054-7

Vogt M., Blum O., Hutter A., Jung H., Meyer B. Branchenleitfaden für die Papierindustrie. Duisburg, Arbeitsgemeinschaft Branchenenergiekonzept Papier, 2008. 180 p.

Published

2020-04-03

How to Cite

Прохоров, Д. А., and А. С. Смолин. “Performance Assessment of the Drying Section of Ma-Chines for the Production of Tissue Paper Grades”. Lesnoy Zhurnal (Forestry Journal), no. 2, Apr. 2020, pp. 159-68, doi:10.37482/0536-1036-2020-2-159-168.

Issue

Section

TECHNOLOGY OF WOOD CHEMICAL PROCESSING AND PRODUCTION OF WOOD-POLYMER COMPOSITES