Organic carbon Stocks in the forest Soils of Northern Mongolia
DOI:
https://doi.org/10.37482/0536-1036-2020-2-169-176Keywords:
forest soil, organic carbon, SOC stock, aspect, Northern MongoliaAbstract
Soil organic carbon (SOC) stock and its variation on the regional and large spatial scales are critical for estimating the global SOC inventory and predicting further changes. This study was aimed at estimation of the SOC stock in the boreal forests of Northern Mongolia. The study was carried out in the forested areas of the Bulgan, Selenge and Tuv provinces using a completely randomized design. A total of 900 soil samples from 60 sampling points were col-lected for the laboratory analyses. At each point, a soil profile with a depth of more than 30 cm was laid out, and then soil samples were taken from three soil layers: 0–5, 5–15, and 15–30 cm of each profile. Therefore, the results of the assessment show a high difference of the SOC stock not only between the provinces, but also within each province. The higher SOC stocks were observed in the Selenge (123.5±14.85 t/ha), and lowest in the Tuv (51.23±7.8 t/ha) prov-inces. The estimated SOC stock in the studied regions was 93.77 t/ha on average. We found relatively less SOC stock in the boreal forests of Mongolia compared with the Asian part of Russia including Siberia and the Russian Far East. Such a less SOC stock may be caused by geographical distribution, where the Mongolian forests border the Central Asian dry steppe and frequent water deficit. However, we found that the accumulation of SOC stocks in the boreal forests of Mongolia is largely dependent on the mountain slopes and aspects combined with the distribution of precipitation across the country. Higher amount of SOC stocks were found in north-facing aspects and lower positions with low slopes of the mountains in lower altitude. Consequently, moisture supply basically determines the pattern of the SOC stock distribution in the northern boreal forests of Mongolia.
For citation: Tungalag М., Gerelbaatar S., Lobanov A.I. Organic Carbon Stocks in the For-est Soils of Northern Mongolia. Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 2, pp. 169–176. DOI: 10.37482/0536-1036-2020-2-169-176
Downloads
References
Бобкова К.С., Галенко Э.П., Тужилкина В.В., Осипов А.Ф., Кузнецов М.А. Роль бореальных лесов Европейского Севера России в регулировании углеродного баланса северного полушария // Управленческие аспекты развития северных территорий России: материалы всерос. науч. конф. (с междунар. участием). Сыктывкар: КРАГСИУ, 2015. Ч. 3. с. 36–41. [Bobkova K.S., Galenko E.P., Tuzhilkina V.V., Osipov A.F., Kuznetsov M.A. The Role of Boreal Forests of the European North of Russia in Carbon Balance Regulation of the Northern Hemisphere. Management Aspects of Development of the Northern Territories of Russia. Proceedings of the All-Russian Scientific Conference with International Participation. Syktyvkar, KRASSA Publ., 2015, part 3, pp. 36–41].
Ваганов Е.А., Ведрова Э.Ф., Верховец С.В., Ефремов С.П., Ефремова Т.Т., Круглов В.Б., Онучин А.А., Сухинин А.И., Шибистова О.Б. Леса и болота Сибири в глобальном цикле углерода // сиб. экол. журн. 2005. т. 12, № 4. с. 631–650. [Vaganov E.A., Vedrova E.F., Verkhovets S.V., Efremov S.P., Efremova T.T., Kruglov V.B., Onuchin A.A., Sukhinin A.I., Shibistova O.B. Forests and Swamps of Siberia in the Global Carbon Cycle. Sibirskiy ekologicheskiy zhurnal [Contemporary Problems of Ecology], 2005, vol. 12, no. 4, pp. 631–650].
Замолодчиков Д.Г., Грабовский В.И., Честных О.В. Динамика баланса углерода в лесах федеральных округов Российской Федерации // вопр. лесн. науки. 2018. т. 1(1). с. 1–24. [Zamolodchikov D.G., Grabowsky V.I., Chestnykh O.V. Dynamics of Carbon Budget in Forests of Federal Districts of Russian Federation. Voprosy lesnoy nau-ki[Forest Science Issues], 2018, vol. 1(1), pp. 1–24.]. DOI: 10.31509/2658-607X-2018-1-1-1-24
Ball D.F. Loss-on-Ignition as an Estimate of Organic Matter and Organic Carbon in Non-Calcareous Soils. Journal of Soil Science, 1964, vol. 15, iss. 1, pp. 84–92. DOI: 10.1111/j.1365-2389.1964.tb00247.x
Bayat A.T. Carbon Stock in an Apennine Beach Forest. MSC Thesis, Geo-Informa-tion Science and Earth Observation. Enschede, Netherlands, University of Twente, 2011. 54 p.
Berg E.E., Henry J.D., Fastie C.L., De Volder A.D., Matsuoka S.M. Spruce BeetleOutbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: Relationship to Summer Temperatures and Regional Differences in Disturbance Re-gimes. Forest Ecology and Management, 2006, vol. 227, iss. 3, pp. 219–232. DOI: 10.1016/j.foreco.2006.02.038
Carvalhais N., Forkel M., Khomik M., Bellarby J., Jung M., Migliavacca M. et al. Global Covariation of Carbon Turnover Times with Climate in Terrestrial Ecosystems. Na-ture, 2014, vol. 514, pp. 213–217. DOI: 10.1038/nature13731
Chapin F.S., Sturm M., Serreze M.C., McFadden J.P., Key J.R., Lloyd A.H. et al. Role of Land-Surface Changes in Arctic Summer Warming. Science, 2005, vol. 310, iss. 5748, pp. 657–660. DOI: 10.1126/science.1117368
Ciais P., Sabine C. et al. Carbon and Other Biogeochemical Cycles. Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung et al. Cambridge, Cambridge University Press, 2013, pp. 465–570.
Dolman A.J., Shvidenko A., Schepaschenko D., Ciais P., Tchebakova N., Chen T. et al. An Estimate of the Terrestrial Carbon Budget of Russia Using Inventory-Based, Eddy Covariance and Inversion Method. Biogeosciences, 2012, vol. 9, iss. 12, pp. 5323–5340. DOI: 10.5194/bg-9-5323-2012
Dulamsuren C., Hauk M., Leuschner C. Seedling Emergence and Establishment of Pinus sylvestrisin the Mongolian Forest-Steppe Ecotone. Plant Ecology, 2013, vol. 214, iss. 1, pp. 139–152. DOI: 10.1007/s11258-012-0152-z
Feyissa A., Soromessa T., Argaw M. Forest Carbon Stocks and Variations along Altitudinal Gradients in Egdu Forest: Implications of Managing Forests for Climate Change Mitigation. Science, Technology and Arts Research Journal, 2013, vol. 2, no. 4, pp. 40–46. DOI: 10.4314/star.v2i4.8
Hancock G.R., Murphy D., Evans K.G. Hillslope and Catchment Scale Soil Organic Carbon Concentration: An Assessment of the Role of Geomorphology and Soil Erosion in an Undisturbed Environment. Geoderma, 2010, vol. 155, iss. 1-2, pp. 36–45. DOI: 10.1016/j.geoderma.2009.11.021
Heiri O., Lotter A.F., Lemcke G. Loss on Ignition as a Method for Esti-mating Organic and Carbonate Content in Sediments: Reproducibility and Com-parability of Results. Journal of Paleolimnology, 2001, vol. 25, pp. 101–110. DOI: 10.1023/A:1008119611481
Karjalainen T., Richards G. Definitions and Methodological Options to Inventory Emissions from Direct Human-Induced Degradation of Forest and Devegetation of Other Vegetation Types. IPCC Report. Ed. by J. Penman, M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti et al. Japan, IGES, 2003. 32 p.
Kirschbaum M.U.F. Will Changes in Soil Organic Carbon Act as a Positive or Negative Feedback on Global Warming? Biogeochemistry, 2000, vol. 48, iss. 1, pp. 21–51. DOI: 10.1023/A:1006238902976
Köchy M., Hiederer R., Freibauer A. Global Distribution of Soil Organic Carbon – Part 1: Masses and Frequency Distributions of SOC Stocks for the Tropics, Permafrost Regions, Wetlands, and the World. Soil, 2015, vol. 1, iss. 1, pp. 351–365. DOI: 10.5194/soil-1-351-2015
Kurz W.A., Dymond C.C., Stinson G., Rampley G.J., Neilson E.T., Carroll A.L. et al. Mountain Pine Beetle and Forest Carbon Feedback to Climate Change. Nature, 2008, vol. 452, pp. 987–990. DOI: 10.1038/nature06777
Lee X., Huang Y., Huang D., Hu L., Feng Z., Cheng J. et al. Variation of Soil Organic Carbon and Its Major Constraints in East Central Asia. PLoS ONE, 2016, vol. 11(3), art. e0150709. DOI: 10.1371/journal.pone.0150709
Mühlenberg M., Appelfelder H., Hoffmann H., Ayush E., Wilson K.J. Structure of the Montane Taiga Forests of West Khentii, Northern Mongolia. Journal of Forest Science, 2012, vol. 58, pp. 45–56. DOI: 10.17221/97/2010-JFS
Mukhortova L., Schepaschenko D., Shvidenko A., McCallum I., Kraxnerb F. Soil Contribution to Carbon Budget of Russian Forests. Agricultural and Forest Meteorology, 2015, vol. 200, pp. 97–108. DOI: 10.1016/j.agrformet.2014.09.017
MPNFI Mongolian Multipurpose National Forest Inventory Report (2014–2016). Ulaanbaatar, Ministry of Nature and Environment, 2016. 126 p.
Myhre G., Shindell D. et al. Anthropogenic and Natural Radiative Forcing. Cli-mate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung et al. Cambridge, Cambridge Uni-versity Press, 2013, pp. 659–740.
Pan Y., Birdsey R.A., Fang J., Houghton R., Kauppi P.E., Kurz W.A. et al. A Large and Persistent Carbon Sink in the Worldʼs Forests. Science, 2011, vol. 333, iss. 6045, pp. 988–993. DOI: 10.1126/science.1201609
Rogers B.M., Soja A.J., Goulden M.L., Randerson J.T. Influence Of Tree Species on Continental Differences in Boreal Fires and Climate Feedbacks. Nature Geoscience, 2015, vol. 8, pp. 228–234. DOI: 10.1038/ngeo2352
Soja A.J., Shugart H.H., Sukhinin A., Conard S., Stackhouse Jr. P.W. Satellite-Derived Mean Fire Return Intervals as Indicators of Change in Siberia (1995–2002). Mitigation and Adaptation Strategies for Global Change, 2006, vol. 11, iss. 1, pp. 75–96. DOI: 10.1007/s11027-006-1009-3
Trahan M.W., Schubert B.A. Temperature-Induced Water Stress in High-Latitude Forests in Response to Natural and Anthropogenic Warming. Global Change Biology, 2016, vol. 22, iss. 2, pp. 782–791. DOI: 10.1111/gcb.13121
Trumbore S.E., Harden J.W. Accumulation and Turnover of Carbon in Soils of the BOREAS Northern Study Area. Journal of Geophysical Research: Atmospheres, 1997, vol. 102, iss. D24, pp. 28817–28830. DOI: 10.1029/97JD02231
Ugawa S., Takahashi M., Morisada K., Takeuchi M., Matsuura Y., Yoshina-ga S. et al. Carbon Stocks of Dead Wood, Litter, and Soil in the Forest Sector of Japan: General Description of the National Forest Soil Carbon Inventory. Bull FFPRI, 2012, vol. 11, pp. 207–221.
Walker X.J., Mack M.C., Johnstone J.F. Stable Carbon Isotope Analysis Reveals Widespread Drought Stress in Boreal Black Spruce Forests. Global Change Biology, 2015, vol. 21, iss. 8, pp. 3102–3113. DOI: 10.1111/gcb.12893
Yohannes H., Soromessa T., Argaw M. Carbon Stock Analysis along Slope and Slope Aspect Gradient in Gedo Forest: Implications for Climate Change Mitigation. Journal of Earth Science and Climate Change, 2015, vol. 6(9), art. 305. DOI: 10.4172/2157-7617.1000305
Zhu M., Feng Q., Zhang M., Liu W., Qin Y., Deo R.C. et al. Effects of Topography on Soil Organic Carbon Stocks in Grasslands of a Semiarid Alpine Region, Northwestern China. Journal of Soils and Sediments, 2019, vol. 19, pp. 1640–1650. DOI: 10.1007/s11368-018-2203-0